Skip to main content

2012-2013 Undergraduate & Graduate Catalog

Search Help

Bachelor of Science in Engineering, Mechanical Engineering Major

Mechanical Engineering encompasses the development, design, and testing of a wide range of machines and mechanical systems that involve mechanics, motion, and energy. These machines and systems include aircraft, vehicles, engines, refrigeration and air-conditioning equipment, alternative-energy converters, and robotic systems.

Students who elect the mechanical engineering program may prepare themselves for a variety of mechanical engineering careers and fulfill the educational requirements for taking the Fundamentals of Engineering professional examination before graduation.

The junior and senior years of the mechanical engineering program build upon the foundation courses to provide greater depth in engineering science, engineering design, and the program areas of mechanical engineering. Students complete required and elective courses distributed in thermal systems, mechanical design and manufacturing, and mechanical systems and control.

Integral to all four years of the program is a design and build educational philosophy incorporated through extensive laboratory and project activities as preparation for professional practice. Students engage in design at all levels of the curriculum. At each level they must realize their designs and proceed with testing, validation, and redesign. This approach allows students to experience many real world constraints such as project economics, project planning and scheduling, environmental considerations, manufacturability/producibility of the designs, laboratory and product safety, and product reliability.

Accreditation

The mechanical engineering major is accredited by the Engineering Accreditation Commission of ABET, www.abet.org.

Program Educational Objectives

  1. The graduate will have the technical knowledge and capabilities expected of a practicing engineer appropriate to mechanical engineering, specifically in the areas of:
    • Mechanical design and manufacturability
    • Mechanical systems and control
    • Thermal-fluid systems
  2. The graduate will be able to function effectively in an industrial environment. He or she must have the ability to communicate effectively, engage in critical thinking, and have highly developed skill in problem solving (in both individual and team situations).
  3. The graduate will have the ability to apply engineering knowledge and be able to create physical realizations of his or her theoretical concepts and models.
  4. The graduate will have the demonstrated ability to engage in engineering design.
  5. The graduate will have an awareness of the need for continued professional growth.
  6. The graduate will have an awareness of, and sensitivity to, those areas in which engineering practice affects society and the environment. Such awareness, extending beyond technical knowledge to include ethical and social responsibility, must frame the continued professional and scholarly growth of the graduate.

Program Outcomes and Assessment

The graduate will demonstrate:

  1. an ability to apply knowledge of mathematics, science, and engineering,
  2. an ability to design and conduct experiments, as well as to analyze and interpret data,
  3. an ability to design a system, component, or process to meet desired needs,
  4. an ability to function on multidisciplinary teams,
  5. an ability to identify, formulate, and solve engineering problems,
  6. an understanding of professional and ethical responsibility,
  7. an ability to communicate effectively,
  8. the broad education necessary to understand the impact of engineering solutions in a global and societal context,
  9. a recognition of the need for, and an ability to engage in life-long learning,
  10. a knowledge of contemporary issues,
  11. an ability to use the techniques, skills, and modern engineering tools necessary for engineering practice,
  12. design & realize physical systems,
  13. work in thermal-fluid systems, and
  14. work in mechanical systems.

Degree Requirements

Mechanical engineering students must complete all requirements for the B.S.E. degree including the general education and basic skills requirements, the foundations of engineering courses, cooperative education, the engineering design Capstone and the following mechanical engineering courses:

Required Courses:

Elective Courses - 11�12 credits (three courses) selected from the following:

Sample Curriculum for the Junior and Senior Years of the Mechanical Engineering Major

First Co-op Semester: Spring/Summer

Fifth Academic Semester: Fall

Second Co-op Semester: Winter

Sixth Academic Semester: Spring/Summer

Third Co-op Semester: Fall

Seventh Academic Semester: Winter

Eighth Academic Semester: Spring/Summer

Engineering Program Description

Click here for the program description.



If you are in need of assistance please submit any questions or comments.