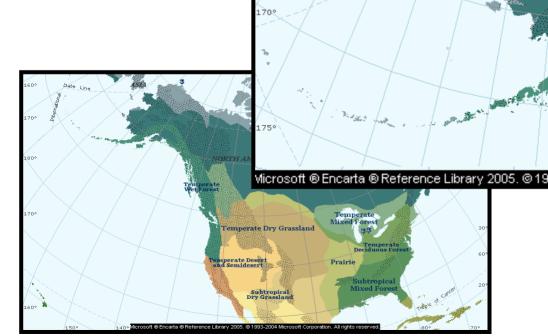
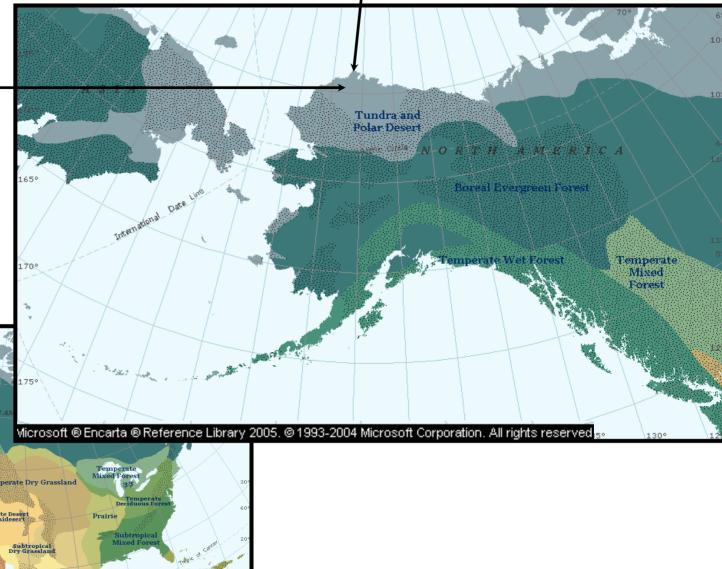
Soil Temperature and Thaw Response to **Manipulated Air Temperature and Plant Cover at Barrow and Atgasuk, Alaska Robert D. Hollister** Patrick J. Webber **Robert T. Slider** Fredrick E. Nelson **Craig E. Tweedie**

ITEX


 Looks at plant community changes under simulated warming conditions



Barrow 71°18'N 156°40'W

Atqasuk 70°29'N 157°25'W

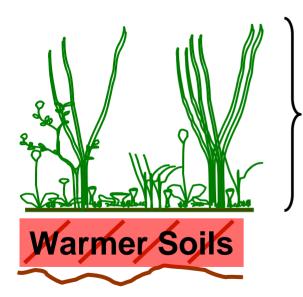
Barrow

WET

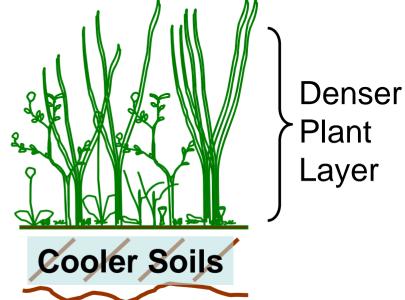
DRY

Atq<u>as</u>uk

OTC's on Plants

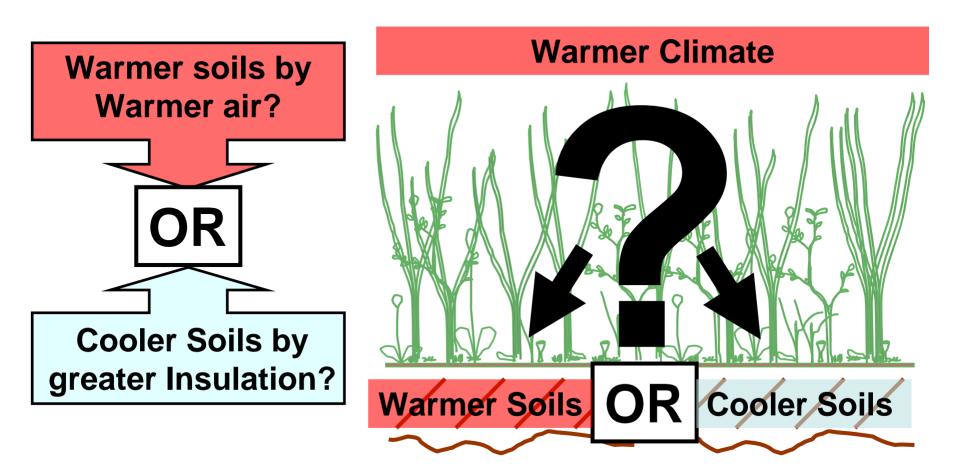

Under simulated warming conditions we see an increase in vegetation cover (Walker et al. 2005) Warmed Control Key 🎙 🗁 lichen erect shrub forb short graminoid tall graminoid bryophyte

Plants, Soil, and Temperature

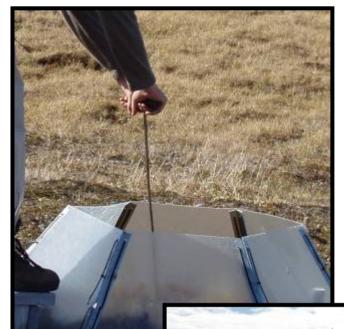

Changes & Interactions in the Arctic

In 2006 Hollister et al. suggested that an increase in cover may yield a greater amount of thermal resistance

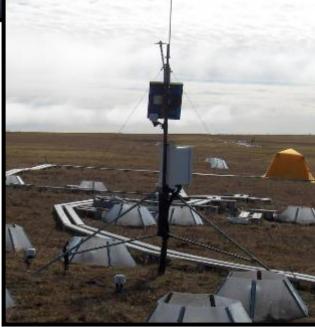
Plants provide insulation



Open Plant Layer


The Big Question

How much does vegetation influence soil temperature?



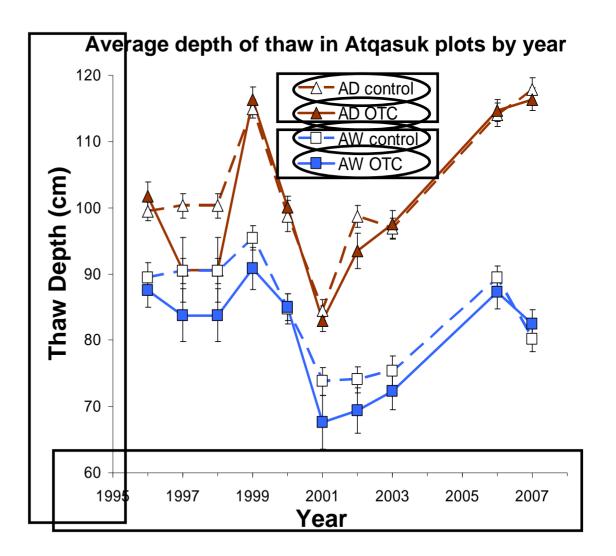
Measurements

 Thaw Depth (end of season using graduated metal rod)

• Air and Soil Temperatures (using Campbell Data Loggers)

OTC's on Thaw

Thaw depth in cm


Year

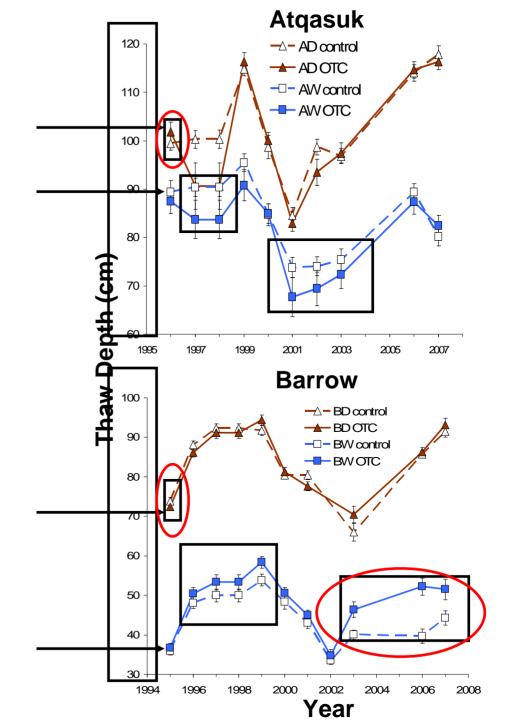
Dry Site

Wet Site

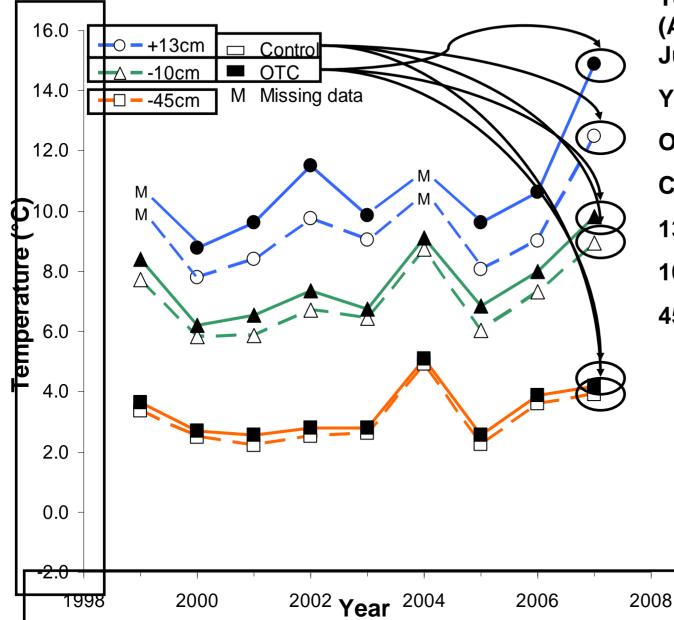
OTC Plots (averaged)

Control Plots (averaged)

OTC's on Thaw


August average depth of thaw by site and year

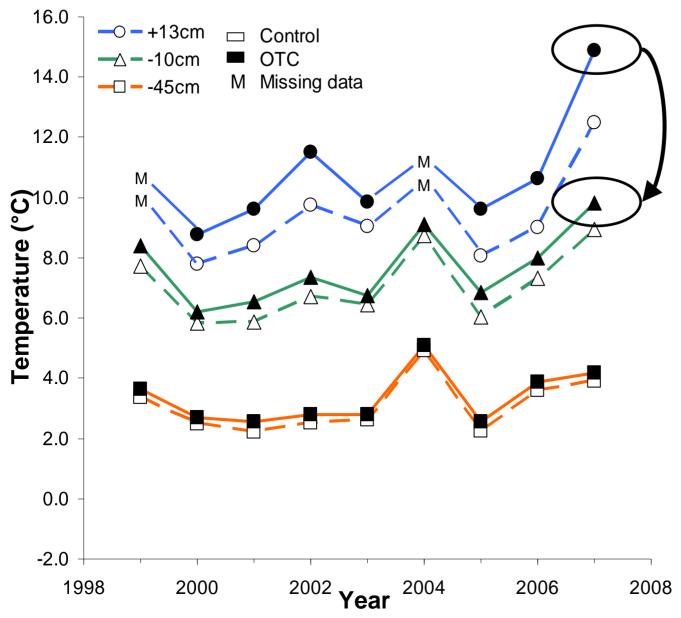
- -Thaw Deeper in Atqasuk than Barrow
- -Dry sites deeper than wet


-In Dry Sites Thaw Depth did not show much difference between OTC and Control

-Wet sites showed more significant differences between OTC and Control

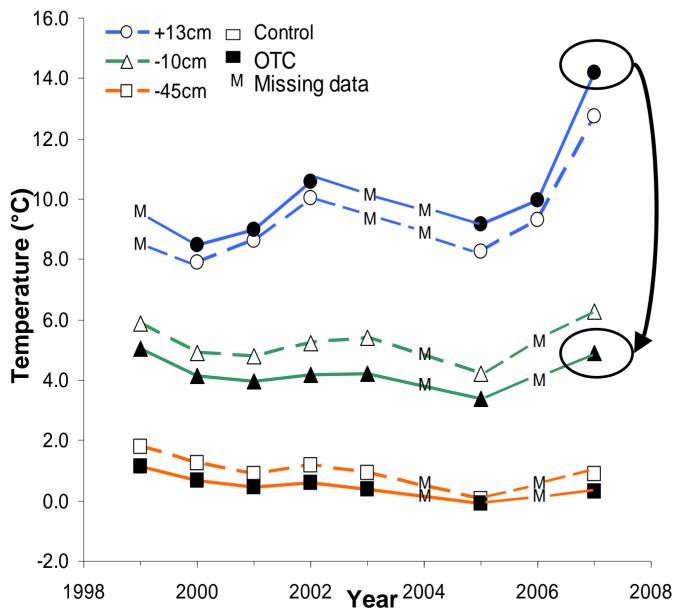
-Barrow Wet showed greater difference between CTL and OTC in recent years

Soil and Air Temperature



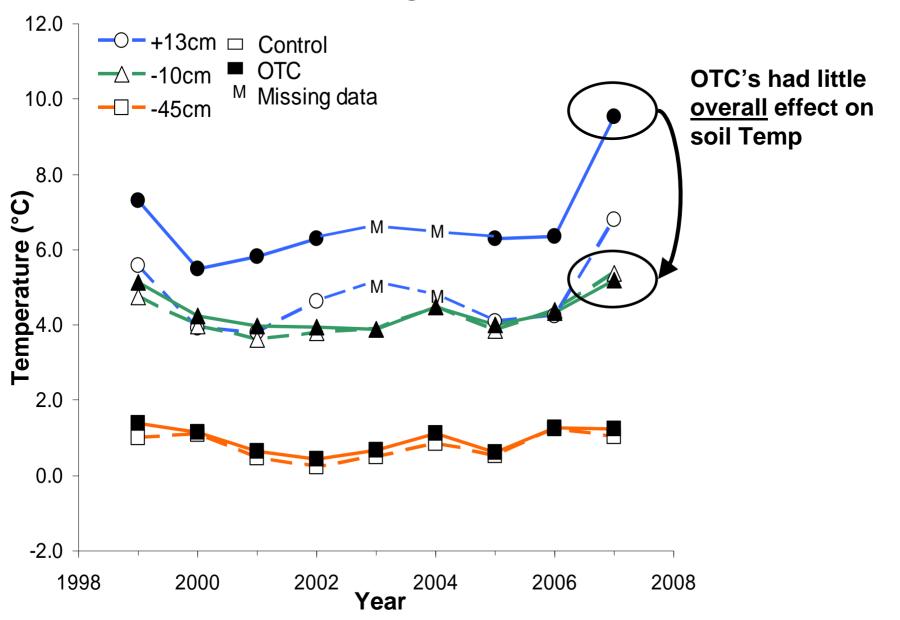
Temperature in C (Averaged for month of July) Year OTC plots Control plots 13 cm above ground 10 cm below ground 45 cm below ground

Atqasuk Dry

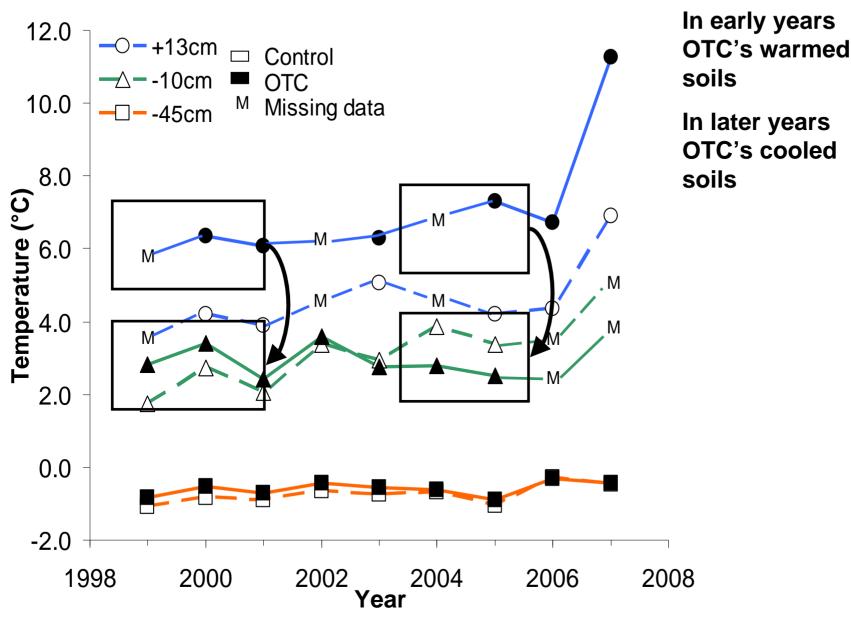

Average July temperature for plots by sensor height and treatment

OTC's Warmed Soils

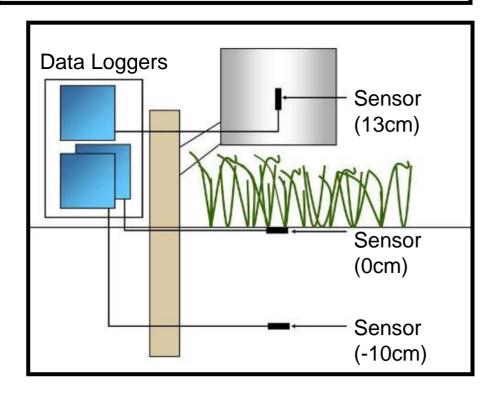
Atqasuk Wet


Average July temperature for plots by sensor height and treatment

OTC's Cooled Soils


Barrow Dry

Average July temperature for plots by sensor height and treatment


Barrow Wet

Average July temperature for plots by sensor height and treatment

Vegetation Manipulation

Temp. probes at 13cm, 0cm, and -10cm

Vegetation <u>added</u> or <u>removed</u> in 10cm diameter

Vegetation Manipulation

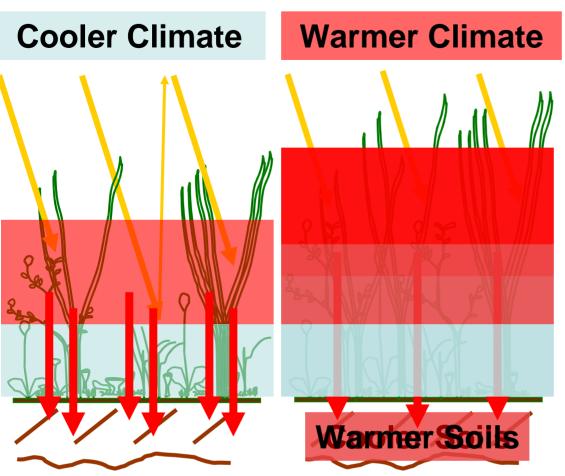
Warmed								
	C							
			asuk Dry					
	13	12.5	13.4	14.3	14.9			
	0	14.4	12.8	11.1	15.6			
	-10	8.9	9.8	8.9	9.8			
	Diff	3.5	3.6	5.4	 5.1			
		· · ·	suk Wet N		,			
	13	12.8	10.1	13.4	14.2			
	0	12.8	6.7	7.2	11.1			
	-10 6.3		4.5	4.9				
	Diff	6.5	5.6	<mark>9</mark> .3				
			rrow Dry I	· ·	· .			
	13	6.8	8.6	8.4	9.5			
	0	10.4	8.2	4.5	8.2			
	-10	5.4	5.4	3.1	5.2			
	Diff	1.4	3.2	4.7	4.3			
			ow Wet M	,	,			
	13	6.8	8.9	9.7	11.0			
	0		10.3	4.6	11.5			
	-10		3.7	3.0	4.4			
	Diff 5.3 6.7 6.6							
ho data due to instrument malfunction								

1) At -10cm Added treatments were cooler than Bare

	Warmed							
	Control	Bare	Added	9 Years				
	Atqasuk Dry Heath (AD)							
13	12.5	13.4	14.3	14.9				
0	14.4	12.8	11.1	15.6				
-10	8.9	9.8	8.9	9.8				
Diff	3.5	3.6	5.4	5.1				
	Atqas	suk Wet N	/leadow (/	AW)				
13	12.8	10.1	13.4	14.2				
0	12.8	6.7	7.2	11.1				
-10	6.3	4.5	3.8	4.9				
Diff	6.5	5.6	9.7	9.3				
	Ba	rrow Dry I	Heath (BD	D)				
13	6.8	8.6	8.4	9.5				
0	10.4	8.2	4.5	8.2				
-10	5.4	5.4	3.1	5.2				
Diff	1.4	3.2	4.7	4.3				
	Barrow Wet Meadow (BW)							
13	6.8	8.9	9.7	11.0				
0		10.3	4.6	11.5				
-10		3.7	3.0	4.4				
Diff		5.3	6.7	6.6				
no data due to instrument malfunction								

- 1) At -10cm Added treatments were cooler than Bare
- 2) Greatest difference in temp. from 13cm to -10cm was seen in Added treatments

	Warmed						
	Control	Bare	Added	9 Years			
	Atqa	asuk Dry	Heath (A	D)			
13	12.5	13.4	14.3	14.9			
0	14.4	12.8	11.1	15.6			
-10	8.9	9.8	<u>8.9</u>	9.8	Ì		
Diff	3.5	3.6	(5.4)	5.1			
	Atqas	uk Wet M	leadow (/	AW)			
13	12.8	10.1	13.4	14.2			
0	12.8	6.7	7.2	11.1			
-10	6.3	4.5	38	4.9			
Diff	6.5	5.6	(9.7)	9.3			
	Bar	row Dry I	leath (BL))			
13	6.8	8.6	8.4	9.5			
0	10.4	8.2	4.5	8.2			
-10	5.4	5.4	3.1	5.2			
Diff	1.4	3.2	4.7	4.3			
	Barro	w Wet M	eadow (E	3W)			
13	6.8	8.9	9.7	11.0			
0		10.3	4.6	11.5			
-10		3.7	3.0	4.4			
Diff		5.3	(6.7)	6.6			
no data due to instrument malfunction							


- 1) At -10cm Added treatments were cooler than Bare
- 2) Greatest difference in temp. from 13cm to -10cm was seen in Added treatments
- 3) 9 Years and Added showed similar temperature differences

	Warmed						
	Control	Bare	Added	9 Years			
	Atqa	asuk Dry	Heath (A	D)			
13	12.5	13.4	14.3	14.9			
0	14.4	12.8	11.1	15.6			
-10	8.9	9.8	8.9	9.8			
Diff	3.5	3.6	5.4	5.1			
	Atqas	uk Wet M	leadow (AW)			
13	12.8	10.1	13.4	14.2			
0	12.8	6.7	7.2	11.1			
-10	6.3	4.5	3.8	4.9			
Diff	6.5	5.6	9.7	9.3			
	Bar	row Dry I	Heath (B	D)			
13	6.8	8.6	8.4	9.5			
0	10.4	8.2	4.5	8.2			
-10	5.4	5.4	3.1	5.2			
Diff	1.4	3.2	4.7	4.3			
	Barro	w Wet M	leadow (I	3W)			
13	6.8	8.9	9.7	11.0			
0		10.3	4.6	11.5			
-10		3.7	3.0	4.4			
Diff		5.3	6.7	6.6			
no dat	a due to ir	strument	malfunct	ion			

- 1) At -10cm Added treatments were cooler than Bare
- 2) Greatest difference in temp. from 13cm to -10cm was seen in Added treatments
- 3) 9 Years and Added showed similar temperature differences
- 4) Thicker vegetation did not always lead to cooler temperatures at -10cm

	Warmed							
	Control	Bare	Added	9 Years				
	Atqasuk Dry Heath (AD)							
13	12.5	13.4	14.3	14.9				
0	14.4	12.8	11.1	15.6				
-10	8.9	(9.8)	8.9	(9.8				
Diff	3.5	3.6	5.4	5.1				
Atqasuk Wet Meadow (AW)								
13	12.8	10.1	13.4	14.2				
0	12.8	6.7	7.2	11.1				
-10	6.3	4.5	3.8	4.9				
Diff	6.5	5.6	9.7	9.3				
	Ba	rrow Dry H	leath (Bl	D)				
13	6.8	8.6	8.4	9.5				
0	10.4	8.2	4.5	8.2				
-10	5.4	5.4	3.1	5.2				
Diff	1.4	3.2	4.7	4.3				
	Barro	ow Wet Me	eadow (E	3W)				
13	6.8	8.9	9.7	11.0				
0		10.3	4.6	11.5				
-10		(3.7)	3.0	4.4				
Diff		5.3	6.7	6.6				
no data due to instrument malfunction								

Predicted Changes Under Warmer Climate

- Warmer air will cause an increase in plant cover

-Increased plant cover will reduce heat transfer from air to soil

-In some cases the increased plant cover due to air warming may cause soil cooling (despite air warming)

-In other cases air warming may cause soil warming

Acknowledgements

Organizations

- National Science Foundation (NSF)
- Grand Valley State University (GVSU)
- Barrow Arctic Science Consortium (BASC)
- International Tundra Experiment (ITEX)

GVSU Arctic Ecology Program Michael Lothschutz Jeremy May Amanda Snyder Jean Galang Jenny Liebig

Questions?

Contact

Emailsliderr@student.gvsu.eduLab Websitehttp://faculty.gvsu.edu/hollistr/

Resources

- Hollister, R.D., P.J. Webber, F.E. Nelson, C.E. Tweedie 2006. Soil thaw and temperature response to air warming varies by community: Results from an opentop chamber experiment in northern Alaska. *Arctic Antarctic and Alpine Research* 38: 206-215.
- Hollister, R.D., P.J. Webber, R.T. Slider, F.E. Nelson, C.E. Tweedie *2008. Soil Temperature and Thaw Response to Air Warming Varies with Changing Vegetation.
- Walker, M.D., C.H. Wahren, R.D. Hollister, G.H.R. Henry, L.E. Ahlquist, J.M. Alatalo, M.S. Bret-Harte, M.P. Calef, T.V. Callaghan, A.B. Carroll, H.E. Epstein, I.S. Jónsdóttir, J.A. Klein, B. Magnusson, U. Molau, S.F. Oberbauer, S.P. Rewa, C.H. Robinson, G.R. Shaver, K.N. Suding, C.C. Thompson, A. Tolvanen, Totland, P.L. Turner, C.E. Tweedie, P.J. Webber, P.A. Wookey 2006. Plant community responses to experimental warming across the tundra biome. *Proceedings of the National Academy of Sciences of the United States of America* 103: 1342-1346.

*In print

Light Exposure

Active Layer Depth

Arctic Plant

Limitations

Temperature

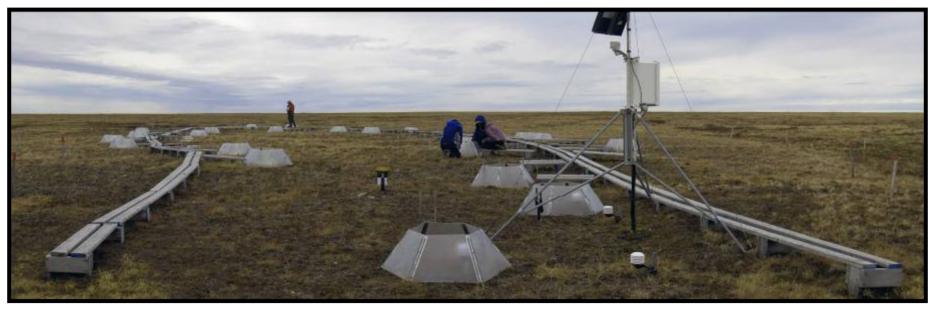
Nutrient Availability

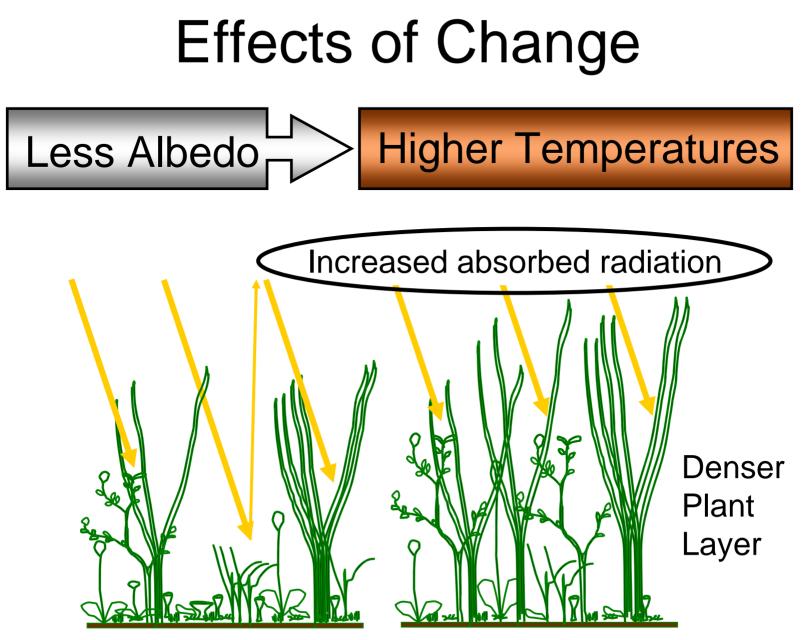
OTC's on Soil

Shows temperature difference between OTC and Control By year and depth for each site in Barrow

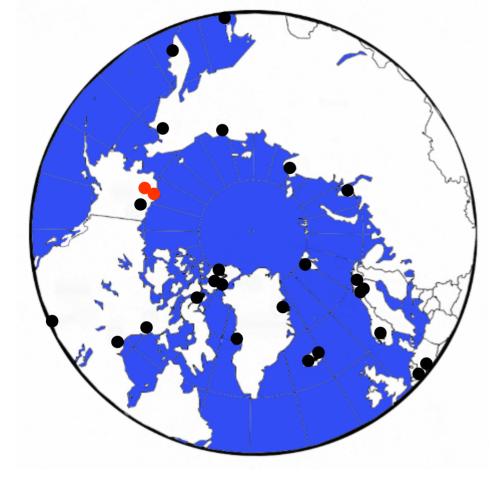
Shows Winter and Summer results

-OTC's warmer in the winter


-OTC's cooler in the summer


-Effect more pronounced in recent years

Г		+	BD Site				BW Site		
	Year	Ocr	n	-10cm	45cm		- Ocm	-10cm	45cm
			vvinter (September-ivay)						
	1998	0.	5	>0.5	- 0.3		0.1		0.2
	1999	0.	7	0.7	0.4		0.5	0.2	0.2
	2000	0.	3	0.4	0.3		0.3	0.1	0.2
	2001	0.	4	0.5	0.2		0.5	0.1	0. <mark>1</mark>
	2002	0.	5	0.5	0.3		0.4	0.0	0. <mark>1</mark>
	2003	0.	4	0.4	0.3		0.4	0.1	0.2
	2004	0.	5	0.6	0.3		0.4	0.2	0.2
	2005	0.	3	0.4	0.2		1.0	0.1	0.2
	2006	0.	3	0.4	0.3				
	2007	0.	7	-0.7	0.5				
			Summer (J			Jur	ne-Augur	st)	
	1998	-0.	1	-0.1	0.1		0.3	0.3	0.4
	1999	0.	2	0.2	0.1		1.3	0.6	0.3
	2000	-0.	2	0.1	0.1		0.6	0.3	0.2
	2001	-0.	1	0.3	0.1		0.0	0.0	0. <mark>1</mark>
	2002	-0.	8	0.2	0.2		0.0	0.1	0.2
	2003	-0.	7	0.0	0.1		-0.3	-0.2	0. <mark>1</mark>
	2004	-1.	1	0.0	0.2		-1.6	-0.9	0.0
	2005	-0.	1	0.0	0.1		-0.6	-0.8	O. 1
	2006	-1.	-	-0.1	0.0				
	2007	-2	Û	-0.1	0.1				


- Use Open Top Chambers (OTC's) to warm 1m² plots
- Four sites with 24 Control and 24 Experimental plots in each
- Ongoing project established in 1994

Chapin et al. XXXXX

