Effects of long term warming on vegetation in northern Alaska

Jeremy May, Robert Hollister, and Robert Slider Biology Department Grand Valley State University

Climate Change and the Arctic

Effects of Warming on Tundra Plants

Even small variations in the environment effect community function

Reproductive effort, growth rates, and nutrient cycling

(Chapin and Shaver, 1985)

Responses to warming are often within one growing season

Graminoids and Shrubs often show the most increased growth

(Arft et al, 1999; Hobie and Chapin, 1998)

Increased growth of these taller plants shift competitive advantage

Bryophytes and lichens become light deficient and decline in abundance

(Epstein et al, 2004; Wahren et al 2004)

This Study

Investigated how 4 plant communities in Northern Alaska respond to experimental warming and between year variations

Hypotheses

Increase in overall cover

Increase in tall plants (Graminoids and Shrubs)

Decrease in short plants (Forbs, Bryophytes, and Lichens)

Diversity should decrease

All trends should be consistent across time and in response to warming

Site Locations

DRY

Atgasuk

Site Setup and Warming

24 Warmed and 24 Control plots

All plots are 1m²

Open-Top Chambers (OTC)

Light enters and traps heat in

Warmed air temp 1-3°C

Established between 1994-96

International Tundra Experiment (ITEX)

Analysis

Only live contacts were used for taxa and diversity analyses

Ran a mixed model repeated measures ANOVA

Directional changes were site specific

	Sampling1		Sampling2			Sampling3							
	Ctl	ОТС	Diff	Ctl	ОТС	Diff	Ctl	ОТС	Diff	W	Y	ln t	
Atqasuk Dry Site													
Deciduous Shrubs	3.3	3.0	-0.3	2.5	2.0	<mark>-0.5</mark>	5.0	2.8	<mark>-2.3</mark>		-		
Evergreen Shrubs	26.7	28.0	1.3	20.6	23.3	2.7	38.8	35.2	<mark>-3.6</mark>		*		
Graminoids	12.2	12.4	0.2	8.5	6.3	<mark>-2.2</mark>	24.2	19.2	<mark>-5.0</mark>		*		
Forbs	2.1	2.0	-0.1	1.0	2.7	1.7	2.8	3.9	1.2		?		
Lichens	55.6	62.1	6.5	51.4	52.8	1.4	39.9	37.9	<mark>-2.0</mark>				
Bryophytes	8.7	10.6	1.9	10.4	9.9	<mark>-0.5</mark>	7.9	7.9	0.0		?		
			A	tqasuk	Wet Site								
Deciduous Shrubs	9.1	6.5	-2.7	10.3	7.8	<mark>-2.6</mark>	11.7	10.3	<mark>-1.4</mark>		?		
Graminoids	27.3	25.8	-1.5	18.3	22.3	4.0	41.8	50.9	9.1	*	*	_	
Forbs	1.5	1.6	0.1	1.6	2.0	0.4	1.7	2.0	0.3				
Lichens	2.1	2.1	0.0	1.3	3.0	1.7	1.0	1.7	0.7				
Bryophytes	83.5	79.7	<mark>-3.8</mark>	88.3	86.6	<mark>-1.7</mark>	87.7	95.0	7.3		*		
				Barrow	Dry Site								
Deciduous Shrubs	15.0	14.9	-0.1	28.5	24.3	<mark>-4.2</mark>	24.5	20.0	<mark>-4.4</mark>		*		
Evergreen Shrubs	11.3	15.2	3.9	20.4	24.8	4.4	19.5	27.7	8.2	*	*		
Graminoids	2.8	4.1	1.3	6.7	11.0	4.3	8.6	20.4	11.9	*	*	*	
Forbs	4.0	4.0	0.0	6.6	6.0	<mark>-0.6</mark>	7.7	12.3	4.6		*	~	
Lichens	19.6	19.2	-0.4	31.7	20.9	- <mark>10.8</mark>	32.5	15.9	- <mark>16.5</mark>	*	*	*	
Bryophytes	8.5	5.6	<mark>-2.9</mark>	16.6	11.4	<mark>-5.3</mark>	11.7	7.1	<mark>-4.5</mark>		*		
				Barrow	Wet Site								
Deciduous Shrubs	0.0	1.6	1.6	0.0	3.2	3.2	0.0	10.5	<u>10.5</u>				
Graminoids	39.2	41.5	2.3	59.3	58.3	-1.0	50.6	51.3	0.7		*		
Forbs	15.6	12.5	-3.1	14.2	11.2	-3.0	15.2	16.5	1.3		1		
Lichens	5.1	4.7	-0.4	8.8	6.8	<mark>-1.9</mark>	9.8	5.9	<mark>-3.9</mark>				
Bryophytes	38.1	38.1	0.0	52.5	41.0	- <mark>11.5</mark>	25.0	16.1	<mark>-8.9</mark>	*		?	

Between year variation had more influence than warming overall

Only Barrow Dry Site had a year/warming interaction

Shrubs and Graminoids responded positively overall

Short plants had mixed responses

Amplifying Effects of Taxa on Growth Form

	Sampling1			Samp	oling2	- 1	Samp	oling3		
	Ctl	OTC	Diff	Ctl	OTC	Diff	Ctl	OTC	Diff W Y	Int
Graminoids	27.3	25.8	-1.5	18.3	22.3	4.0	41.8	50.9	9.1 *	
Single Graminoids	27.3	25.8	-1.5	18.3	22.3	4.0	41.8	50.9	9.1 * *	*
Carex aqualtilis complex	22.0	21.1	-0.9	13.5	16.7	3.2	31.4	37.7	6.3* *	*
Dupontia fisheri/psilosantha	0.0	0.0	0.0	0.0	0. 1	<u>0. 1</u>	0.2	0.1	-0.1	
Eriophorum angustifolium	3.2	2.8	-0.4	3.1	3.4	0.3	6.8	7.9	1.1	
Eriophorum russeolum complex	2.1	1.9	-0.2	1.7	2.1	0.4	3.4	5.2	1.8	

Atqasuk Wet Site

Best example is in second sampling

All taxa within the Graminoids respond positively and add to the change in the Growth Form

This example most difference driven by *Carex aquatilis* complex

Taxon Changes Cancelling Each Other Out

	Sampling1			Sampling2			Sampling3			
	Ctl	OTC	Diff	Ctl	OTC	Diff	Ctl	OTC	Diff	W Y Int
Evergreen Shrubs	26.7	28.0	1.3	20.6	23.3	27	38.8	35.2	-3.6	*
Cassiqpe tetragona	6.5	8.9	24	4.7	7.8	3.1	126	13.2	0.6	*
Diapensia lapponica	3.4	3.2	-0.2	25	20	-0.5	6.3	4.6	-1.7	*
Lectumpalustre	10.1	9.7	-0.4	8.1	8.3	0.2	10.7	9.5	-1.2	
Vaccinium vitis-idaea	6.7	6.2	-0.5	5.3	5.2	-0.1	9.2	7.9	-1.3	* *

Atqasuk Dry Site

Most pronounced in the first sampling

C. tetragona responds positively to warming

Other evergreen shrubs respond negatively

Overall they mute the change for in Growth Form

Diversity

	Sampling 1			Sam	oling 2		Sampling 3				Effects		
	CTL	ОТС	Diff	CTL	OTC	Diff	CTL	ОТС	Diff	W	Y		
Atqasuk Dry Site													
Richness	17.58	17.42	-0.17	16.75	16.50	-0.25	16.25	15.38	-0.88		*	Ц	
Simpson	0.88	0.87	-0.01	0.89	0.88	-0.01	0.90	0.89	-0.01		*	П	
	Atgasuk Wet Site											I	
Richness	13.75	13.13	-0.63	11.63	10.79	-0.83	11.88	11.29	-0.58		*		
Simpson	0.80	0.80	0.00	0.76	0.76	0.00	0.77	0.79	0.02		*	Π	
	Barrow Dry Site									_	Ŧ		
Richness	19.33	18.71	-0.63	19.79	18.13	-1.67	19.88	16.96	-2.92	*		Ι	
Simpson	0.87	0.84	-0.03	0.86	0.84	-0.02	0.87	0.83	-0.04	*	*	T	
			В	arrow W	et Site							Т	
Richness	18.67	17.96	-0.71	15.96	15.83	-0.13	16.38	14.79	-1.58		*		
Simpson	0.86	0.85	-0.01	0.84	0.81	-0.03	0.86	0.81	-0.05	?	*	Τ	

Year effects had more influence than warming did overall

Richness decreased in all sites across all samplings

Simpson's Diversity decreased in all sites across all samplings

Differences were most pronounced in Barrow sites

So why does Year effect make so much of a difference?

Yearly Differences In:

Winter snow cover and depth

Summer precipitation amounts

Temperatures increasing

Conclusions

There was a larger difference between years than between treatments

Tall plants (Shrubs and Graminoids) increased in cover over time but had mixed responses to treatments by site

Short plants (Forbs, Lichens, and Bryophytes) were often site specific in responses and were resistant to change over time

Some taxa within groups respond differently and mute overall Growth Form change

Richness and Simpson Diversity decrease over time (except the Barrow Dry Site) and in response to warming

Acknowledgements

Rob Slider, Jennifer Liebig, Amanda Snyder, Jean Galang, and Mike Lothshultz

References

- Barbour, Michael; Jack Burk; Wanna Pitts; Frank Gilliam; and Mark Schwartz. 1999. <u>Terrestrial</u> <u>Plant Ecology</u>. 210-239.
- Chapin III, F. Stuart; and Gaius R. Shaver. 1985. "Individualistic Growth response of Tundra Plant Species to Environmental Manipulations in the Field". *Ecology.* 66 (2) 564-576.
- Hobbie SE, Chapin FS (1998) Response of tundra plant biomass, aboveground production, nitrogen, and CO2 flux to experimental warming. *Ecology*, 79, 1526-1544.
- Hollister, Robert D.; Patrick J. Webber; Craig E. Tweedie. 2005. "The response of Alaskan arctic tundra to experimental warming: differences between short and long term responses". *Global Change Biology.* 11. 525-536.
- IPCC (2007) Climate Change 2007: Impacts, Adaptations and Vulnerability. Contribution of Working Group II to the Fourth Assessment Report of the IPCC. Cambridge University Press, Cambridge, United Kingdom.
- Wahren, C.-H. A.; M. D. Walker; M. S. Bret- Harte. 2005. "Vegetation responses in Alaskan arctic tundra after 8 years of a summer warming and winter snow manipulation experiment." *Global Change Biology.* 11 (4). 537-552.

