Arctic vegetation response to warming

Jennifer Liebig
Robert Hollister
Jeremy May
Grand Valley State University
Abstract

High latitude regions are expected to experience the most profound climate change in coming decades. Here we examine the changes in plant cover in response to over a decade of experimental warming at four sites in northernmost Alaska. Plant cover was estimated using a point frame in 2007 and 2008. Previous studies have found that when compared to the control plots, vascular plants increased cover in the warmed plots. This study examines the differences between plants species classified into four different zones defined by their northernmost regional distribution developed by Steven Young. We found that species in Zone 4, the zone with the southernmost northern limit, increased cover in warmed plots, while the change in cover of species from the other zones varied among sites. These findings support the prevailing wisdom that species will expand their distribution at the northern limit of their current range.
Climate Change: Impacts on the Arctic
Steven B Young (1971)

Used observations of vegetation on St. Lawrence Island to establish a zonation scheme of four zones based on the northern limits of species.
International Tundra Experiment
Site Locations

- Barrow
- Atqasuk
- Zone 2
- Zone 3
Barrow

Zone 2 (Cooler)

Dry Heath

Atqasuk

Zone 3 (Warmer)

Wet Meadow
Warming Treatment
Point frame data collection
Barrow Dry

Cover (hits per plot)

Zone 1 Zone 2 Zone 3

- Control
- Warmed

Not present

* denotes significant difference
Atqasuk Dry

Cover (hits per plot)

Zone 1 Zone 2 Zone 3

Control Warmed

*
Atqasuk Wet

![Graph showing cover (hits per plot) for Control and Warmed treatments across different zones. Zone 2 has significantly higher cover compared to Zone 1 and Zone 3.](image-url)
Summary

• Vegetation responded to warming
• Young’s zonation scheme is a useful classification tool - the zones are reasonable and behave differently from each other
• Zone 1’s performance was poor
• Zone 2 did well in the warmed environment
• Zone 3 is poorly represented in the sites and showed mixed results
References

Acknowledgements

Thanks to the members of the Arctic Ecology Program in 2007-2008: Jeremy May, Robert Slider, Jean Marie Galang, Amanda Snyder, and Michael Lothshutz.

Thanks to the National Science Foundation for funding and the Barrow Arctic Science Consortium for providing logistics in Alaska.