Using remotely-sensed multispectral data to help understand vegetation cover in Northern Alaska

Hana Christoffersen
Grand Valley State University
Biology Department

IPCC (International Panel on Climate Change) 2001.

\square Increasing NDVI
\square Decreasing NDVI

- Normalized Difference Vegetation Index
- Remotely-sensed greening or browning trends in the Arctic

Electromagnetic Spectrum

Electromagnetic Spectrum

Multispectral \square
\square
\square

Electromagnetic Spectrum

Electromagnetic Spectrum

$$
N D V I=\frac{\text { NIR }- \text { RED }}{N I R+R E D}
$$

$$
+\infty
$$

Co-s

暘

7

$$
+\infty
$$

High Altitude

Ground

Hazards

Enormous area

Image resolution

Questions

Questions

1. Can we use plot-level photos to accurately quantify presence and estimates of tundra vegetation?

Questions

1. Can we use plot-level photos to accurately quantify presence and estimates of tundra vegetation?
2. Does drone data accurately quantify presence and estimates of tundra vegetation?

Questions

1. Can we use plot-level photos to accurately quantify presence and estimates of tundra vegetation?
 2. Does drone data accurately quantify presence and estimates of tundra vegetation?

0 3. How do spectral signatures compare between ground-based and airborne sensors?

Arctic System Science (ARCSS)

Arctic System Science (ARCSS)

1. Can we use plot-level photos to accurately quantify presence and estimates of tundra vegetation?
2. Can we use plot-level photos to accurately quantify presence and estimates of tundra vegetation?

- Ground truth plot-level photos

1. Can we use plot-level photos to accurately quantify presence and estimates of tundra vegetation?

- Ground truth plot-level photos
- Apply object-based image analysis to segment and classify pixels

\square Shrubs (12\%)
- Grass (45\%)
- Forbs (25\%)
\square Litter (18\%)

1. Can we use plot-level photos to accurately quantify presence and estimates of tundra vegetation?

- Ground truth plot-level photos
- Apply object-based image analysis to segment and classify pixels
- Create a classification map
- Assess classification accuracy
- Analyze change from 2012-2019

2. Does drone data accurately quantify presence and estimates of tundra vegetation?
3. Does drone data accurately quantify presence and estimates of tundra vegetation?

- Ground truth drone images
- Apply object-based image analysis to segment and classify pixels
- Create a classification map
- Assess classification accuracy

2. Does drone data accurately quantify presence and estimates of tundra vegetation?

- Ground truth drone images
- Apply object-based image analysis to segment and classify pixels
- Create a classification map
- Assess classification accuracy
- Analyze change?
\because 3. How do spectral signatures compare between groundbased and airborne sensors?

0 3. How do spectral signatures compare between groundbased and airborne sensors?

- Compare NDVI across platforms

0 3. How do spectral signatures compare between ground-苞 based and airborne sensors?

- Compare NDVI across platforms
- Compare other vegetation indices (SAVI, ARVI, EVI)?

0 3. How do spectral signatures compare between ground-苞 based and airborne sensors?

- Compare NDVI across platforms
- Compare other vegetation indices (SAVI, ARVI, EVI)?
- Use satellite imagery (Worldview-2)?

Acknowledgements

Questions?

