Sand Creek Watershed Project

Sand Creek Watershed Management Plan

Prepared for Grand Valley Metropolitan Council as part of the Lower Grand River Watershed Project

Grand Valley Metropolitan Council 40 Pearl St NW, Suite 410 Grand Rapids, Michigan 49503

Phone: (616) 77-METRO (776-3876)

Fax: (616) 774-9292

Annis Water Resources Institute Grand Valley State University Lake Michigan Center 740 West Shoreline Drive Muskegon, MI 49441 Phone: (616) 331-3749

Local: (231) 728-3601 Fax: (616) 331-3864 www.gvsu.edu/wri

This project has been funded wholly or in part by the United States Environmental Protection Agency under the assistance agreement to the Michigan Department of Environmental Quality. The contents of this document do not necessarily reflect the views and policies of the Environmental Protection Agency, nor does the mention of trade names or commercial products constitute endorsement or recommendation for use.

SAND CREEK WATERSHED PROJECT

SAND CREEK WATERSHED MANAGEMENT PLAN

MR-2003-113

Submitted by:
Laurie Beth Nederveld, Project Manager
Abigail Matzke, Information & Education Coordinator
Annis Water Resources Institute
Grand Valley State University
740 West Shoreline Drive
Muskegon, MI 49441

TABLE OF CONTENTS

CHAPTER 1	EXECUTIVE SUMMARY	1
CHAPTER 2	INTRODUCTION	6
CHAPTER 3	DESCRIPTION OF WATERSHED	9 9
	3.4 POPULATION	
	3.5 LAND USE	
	3.6 LOCAL WATERSHED AGENCIES AND INTEREST GROUPS	
CHAPTER 4	REPORTED CONDITION OF THE SAND CREEK WATERSHED	
	4.1 CONDITIONS REPORTED IN PREVIOUS STUDIES	
	4.2 CONDITIONS REPORTED IN CURRENT STUDIES	37
CHAPTER 5	DESIGNATED AND DESIRED USES	45
	5.1 DESIGNATED USES IN THE SAND CREEK WATERSHED	45
	5.2 PRIORITIZATION OF DESIGNATED USES	46
	5.3 IMPAIRED DESIGNATED USES	
	5.4 IMPAIRMENTS TO DESIGNATED USES	
	5.5 DESIRED USES	58
CHAPTER 6	WATER QUALITY GOALS	
	6.1 GOALS AND OBJECTIVES	
	6.2 FINAL WATER QUALITY SUMMARY	62
CHAPTER 7	CRITICAL AREAS	63
CHAPTER 8	PROPOSED IMPLEMENTATION ACTIVITIES	67
	8.1 RECOMMENDATIONS	67
	8.2 TECHNICAL ASSISTANCE	67
CHAPTER 9	INFORMATION & EDUCATION STRATEGY	75
CHAPTER 10	METHODS OF MEASURING AND EVALUATING PROJECT	82
	10.1 PLANNING PHASE EVALUATION	
	10.2 IMPLEMENTATION PHASE EVALUATION	87
CHAPTER 11	SUSTAINABILITY	91
GLOSSARY		94
BIBLIOGRAPI APPENDICES	HY	95

FIGURES

FIGURE 1	STUDY AREA	11
FIGURE 2	SUBBASINS	12
FIGURE 3	TOPOGRAPHIC RELIEF	15
FIGURE 4	TOPOGRAPHIC SLOPE	16
FIGURE 5	SOIL TEXTURE	17
FIGURE 6	HYDROLOGIC SOIL GROUPS	18
FIGURE 7	EROSION POTENTIAL (K)	19
FIGURE 8	PRIME FARMLAND SOILS	20
FIGURE 9	SOILS SUITABLE FOR DEVELOPMENT	21
FIGURE 10	POPULATION DENSITY	25
FIGURE 11	POPULATION CHANGE	26
FIGURE 12	PRESETTLEMENT VEGETATION	28
FIGURE 13	LAND USE/COVER	29
FIGURE 14	NATIONAL WETLAND INVENTORY	30
FIGURE 15	WETLAND RESOURCES	31
FIGURE 16	AVERAGE MACROINVERTEBRATE SCORES IN SAND CREEK, 1993-2003	38
FIGURE 17	SAND CREEK AVERAGE WEEKLY WATER TEMPERATURE AND RANGE	42
FIGURE 18	MONITORING SITES	56
FIGURE 19	CRITICAL AREAS	66

TABLES

TABLE 1	TOWNSHIPS AND COUNTIES LOCATED WITHIN THE SAND CREEK WATERSHED	9
TABLE 2	SOILS IN THE SAND CREEK WATERSHED	22
TABLE 3	LOCAL WATERSHED AGENCIES & INTEREST GROUPS	33
TABLE 4	THREATENED, ENDANGERED, AND SPECIAL CONCERN SPECIES IN THE SAND CREEK WATERSHED	
TABLE 5	HIGH QUALITY NATURAL COMMUNITIES IN THE SAND CREEK WATERSHED	44
TABLE 6	DESIGNATED USES FOR SURFACE WATERS IN THE STATE OF MICHIGAN	45
TABLE 7	DESIGNATED USES OF THE SAND CREEK WATERSHED	45
TABLE 8	PRIORITY OF DESIGNATED USES IN THE SAND CREEK WATERSHED	46
TABLE 9	MET, IMPAIRED, OR THREATENED DESIGNATED USES OF THE SAND CREEK WATERSHED	46
TABLE 10	SOURCES AND CAUSES OF POLLUTANTS AFFECTING DESIGNATED USES OF THE SAND CREEK WATERSHED	48
TABLE 11	OPEN LEAKING UNDERGROUND STORAGE TANK SITES IN THE SAND CREEK WATERSHED	52
TABLE 12	PART 201 SITES OF ENVIRONMENTAL CONTAMINATION IN THE SAND CREEK WATERSHED	53
TABLE 13	SAND CREEK WATERSHED E.COLI DATA	57
TABLE 14	DESIRED USES IN THE SAND CREEK WATERSHED	58
TABLE 15	SHORT TERM GOALS TO ENHANCE DESIRED USES OF THE SAND CREEK WATERSHED	58
TABLE 16	WATER QUALITY OBJECTIVES FOR THE SAND CREEK WATERSHED	60
TABLE 17	CRITICAL AREA RANKING SCORES FOR SUBBASINS IN THE	65

TABLE 18	RECOMMENDED IMPLEMENTATION ACTIVITIES FOR THE SAND CREEK WATERSHED	68
TABLE 19	SCHEDULE, COST ESTIMATES, AND POTENTIAL PARTNERS FOR IMPLEMENTATION ACTIVITIES	71
TABLE 20	PLANNING PHASE EVALUATION TOOL OPTIONS	83
TABLE 21	POTENTIAL PROJECT EVALUATION QUESTIONS AND TOOL OPTIONS	84
TABLE 22	EVALUATION TECHNIQUES FOR THE IMPLEMENTATION PHASE	88

APPENDICES

APPENDIX A	BIOLOGICAL ASSESSMENT OF SAND CREEK
APPENDIX B	ROAD/STREAM CROSSINGS INVENTORY
APPENDIX C	PHYSICAL INVENTORY OF SAND CREEK
APPENDIX D	HYDROLOGIC MODEL OF THE SAND CREEK WATERSHED
APPENDIX E	DATA RESULTS FROM THE PRELIMINARY WATERSHED ASSESSMENT OF THE SAND CREEK WATERSHED
APPENDIX F	STRUCTURAL AND VEGETATIVE BEST MANAGEMENT PRACTICES
APPENDIX G	MANAGERIAL BEST MANAGEMENT PRACTICES
APPENDIX H	I&E STRATEGY COMPONENTS

ACKNOWLEDGEMENTS

Many individuals participated in the development of the Sand Creek Watershed Management Plan. The contributions of the Sand Creek Watershed Partners and several committees of the Lower Grand River Watershed Project during this planning effort allowed for a more comprehensive plan. These individuals are listed below:

Sand Creek Watershed Partners:

Ms. Linda Brown Ottawa County Drain Commissioner's Office

Mr. Philip Dakin Timberland Resource Conservation and Development

Ms. Becky Boersma Sand Creek Watershed resident

Mr. Richard Edmonds Tallmadge Township

Mr. Dave Fongers Michigan Department of Environmental Quality (MDEQ)

Mr. Nick LaFleu Marne Lions Club Ms. Mary Ledford Wright Township

Mr. Neil MacDonald Grand Valley State University (GVSU)

Ms. Laurie Beth Nederveld GVSU - Annis Water Resources Institute (AWRI)

Mr. Rodney Prys Marne Lions Club Mr. Mark Rambo City of Walker

Mr. Tim Redder Michigan Department of Transportation (MDOT)

Mr. Brian Scull GVSU

Mr. Ted Stojak Herman Miller, Inc.

Ms. Janice Tompkins MDEQ

Mr. Steve Van Hoeven Ottawa County Road Commission
Ms. Peggy Weick Ottawa County Conservation District

Ms. Pat Wolters Chester Township

Lower Grand River Steering Committee Members:

Mr. Andy Bowman Grand Valley Metropolitan Council (GVMC)

Ms. Janice Tompkins MDEQ

Mr. James Smalligan Fishbeck, Thompson, Carr & Huber, Inc. (FTC&H)

Ms. E. Wendy Ogilvie FTC&H
Mr. Jason Buck FTC&H
Mr. John Koches GVSU - AWRI
Ms. Laurie Beth Nederveld GVSU - AWRI
Ms. Abigail Matzke GVSU- AWRI

Mr. Brian Donovan

Mr. Corky Overmyer

Ms. Erika Rosebrook

Mr. Jim Beelen

Mr. Jim Holtvluwer

City of East Grand Rapids

City of Grand Rapids

Kent County Administration

Allendale Township

Georgetown Township

Mr. Jim Oosting Coldwater River Watershed Council
Mr. Karl Hausler Michigan Department of Agriculture

Ms. Kristine Huizen Frey Foundation

Mr. Paul Geerlings Ottawa County Drain Commissioner

Mr. Scott Conners City of Walker

Mr. Tom Doyle Barry County Drain Commissioner

Lower Grand River Rural Subcommittee Members:

Mr. Aaron Bodbyl-Mast Ottawa County Mr. Aaron Karg Ottawa County

Ms. Arleen Spalding Morrison Lake Improvement Board Mr. Doug Powless Land Conservancy of West Michigan

Mr. Ed Hanenburg River Ridge Farms, Inc.

Ms. Elizabeth Robins Ionia County Conservation District Mr. Fred Steketee Thornapple River Watershed

Mr. Gregory Ransford Robinson Township
Ms. Melissa Eldridge Ionia Conservation District

Ms. Janice Tompkins MDEQ

Mr. Jay Wright Crockery Township
Ms. Mary Ledford Wright Township

Mr. Myron Erickson Wyoming Clean Water Plant Mr. Reggie Brooks Eaton Rapids Township

Mr. Rob Zbiciak MDEQ

Mr. Tom Doyle Barry County Drain Commissioner

Lower Grand River Watershed Technical Subcommittee Members:

Mr. Andy Bowman GVMC

Mr. Bradley Boomstra Kent County Drain Commissioner's Office

Mr. Bryan Jennings Premarc
Mr. James Smalligan FTC&H
Mr. Jason Buck FTC&H
Ms. E. Wendy Ogilvie FTC&H

Mr. Doug Kadzban City of East Grand Rapids

Mr. Eric Swanson RMT, Inc.
Ms. Janice Tompkins MDEQ

Mr. Jim McAllister Kent County Road Commission
Mr. Jim Szejda Ottawa County Health Department

Mr. John Koches GVSU - AWRI
Ms. Laurie Beth Nederveld GVSU - AWRI

Mr. Rob Zbiciak MDEQ

Mr. Russ Henckel City of Wyoming
Mr. Ryan Teelander Cannon Township
Mr. Scott Conners City of Walker

Mr. Steve Van Hoeven Ottawa County Road Commission

CHAPTER 1 EXECUTIVE SUMMARY

WATERSHED DESCRIPTION

Sand Creek is a designated cold water stream, approximately 22 miles in length, and a tributary of the Grand River. It flows primarily southward from Section 35 of Chester Township to the Grand River, west of Grand Rapids. Approximately half the length of Sand Creek is a designated drain. The creek's major tributary is the East Fork, which originates as the Laubach Inter County Drain in Section 11 of Wright Township. Several smaller tributaries and drains, approximately 23, also empty into it. The Sand Creek Watershed encompasses 55 square miles and covers parts of four townships, one city, and two counties: Alpine Township and the city of Walker of Kent County; and Chester, Wright, and Tallmadge Townships of Ottawa County. The watershed is mostly agricultural and includes a mix of forest, residential, and urban areas. The Village of Marne and the city of Walker are the only urban centers located within the watershed.

WATER QUALITY

The Michigan Department of Environmental Quality (MDEQ) lists Sand Creek as having a poor fish community on its 303(d) non-attainment list. Section 303(d) of the federal Clean Water Act requires states to develop Total Maximum Daily Loads (TMDLs) for water bodies that are not meeting Water Quality Standards (WQS). After approval from the U.S. Environmental Protection Agency, the state will be required to take corrective action to meet WQS by 2006 for Sand Creek.

Nine nonpoint source (NPS) pollutants have been identified as impairments or threats to the designated uses of the Sand Creek Watershed. Impacted designated uses include the cold water fishery, other aquatic life and wildlife, partial body contact recreation, and total body contact recreation. NPS pollutants were identified using past and current studies performed in the watershed. Sediment, nutrients, thermal pollution, changes in hydrology, hydrocarbons, and invasive/exotic plant species have been identified as known watershed pollutants. These pollutants are impairing the designated use of cold water fishery and threatening the other aquatic life and wildlife use designation. In addition, pathogens, hydrocarbons, and trash are known pollutants threatening the designated uses of total and partial body contact recreation. Toxic substances, such as inorganic contaminants, synthetic organic contaminants, and volatile organic contaminants, are suspected of impacting all four designated uses.

NPS pollutants of the Sand Creek Watershed result from improper land use practices and a lack of Best Management Practices. The greatest potential threat to the water quality of Sand Creek comes from the velocity, volume, and pollutant load of storm water runoff. Storm water runoff is suspected of contributing to the sedimentation, nutrient loading, thermal pollution, *E.coli* concentrations, and hydrocarbons of Sand Creek as well as its tributaries and drains. NPS pollutants include several sources of groundwater contamination. These sources include several Leaking Underground Storage Tank (LUST) sites and Part 201 sites of environmental contamination, including an abandoned landfill. The extent of impact on the stream's water quality from any of these sites has not been determined. Inadequately maintained road/stream crossings and improperly managed storm water runoff contribute to the excessive erosion and sedimentation at several sites. Siltation is suspected of contributing significantly to the loss of habitat and fishery food sources. The MDEQ has noted that improper agricultural land use

practices and historical channelization activities of the upper watershed have contributed to the reduction in aquatic habitat for fish and macroinvertebrates.

PROJECT GOALS

The overall goal of the Sand Creek Watershed Project is to improve and protect the designated uses of the watershed. In order to achieve this overall goal and attain compliance with the TMDL established in Sand Creek, four goals have been established and prioritized. The primary goal of the Sand Creek Watershed Project is to restore or improve the cold water fishery. The secondary goal of the project is to protect and improve the habitats of native aquatic life and wildlife. Both goals can be achieved by reducing the amount of known pollutants affecting both of these uses. Pollutant reduction can be achieved through proper storm water management that would also serve to address harmful changes in the stream's flow regime. The third goal of the project is to improve and protect partial body contact recreational uses, such as wading and fishing, by reducing pathogen concentrations, hydrocarbons, toxic substances, and trash. These four known and suspected pollutants also affect total body contact recreation uses, such as swimming. The fourth goal of the Sand Creek Watershed Project is to improve and protect total body contact. Structural and vegetative BMPs, policy and management BMPs, and Information and Education (I&E) activities will be needed to reduce known pollutants affecting these impaired and threatened uses. The following objectives have been identified to achieve the long-term goals established for the watershed:

A. Objectives for reducing sediment pollution of the watershed:

- Encourage and implement conservation and environmental farming practices
- Encourage proper erosion and sediment control measures during construction
- Encourage sediment control and better site selection for future access roads
- Encourage proper maintenance at appropriate public access sites
- Encourage proper use of motorized vehicles near stream banks
- Exclude livestock access at impacted sites
- Reduce harmful changes in hydrology
- Minimize impact of discharge from outlets and drainage networks on stream banks and reduce sediment load of storm water runoff
- Encourage adequate erosion and sediment control measures at stream crossings
- Treat and manage urban runoff
- Evaluate log jams on a site-by-site basis

B. Objectives for reducing nutrient pollution of the watershed:

- Discourage undesirable site selection for animal pastures
- Exclude livestock access at impacted sites
- Encourage proper manure management/application
- Encourage proper pet waste disposal
- Install and encourage conservation and environmental farming practices
- Encourage proper fertilizer management and filter/buffer strip installation
- Encourage proper installation, operation, and maintenance of septic systems
- Encourage sanitary sewers in areas serviced by water utilities
- Implement corrective actions for leaking wastewater treatment sites
- Encourage proper composting procedures and curbside collections of yard and kitchen waste
- Treat and manage urban runoff

- C. Objectives for reducing thermal pollution of the watershed:
- Replant and minimize the removal of the canopy on waterways and drainage networks
- Reduce impervious surfaces and effectively manage storm water runoff
- Discourage excessive agricultural water withdrawals
- Reduce sediment pollution
- D. Objectives for reducing harmful changes in hydrology of the watershed:
- Minimize future channelization of the creek/tributaries
- Manage outlet, drain, and tile discharge volume and speed more effectively
- Discourage excessive agricultural water withdrawals in the watershed
- Reduce impervious surfaces and effectively manage storm water runoff
- Allow for stream recovery and stabilization from impacts caused by dam failure
- Discourage future development and destructive manipulation of the floodplain
- Restore wetlands and discourage wetland drainage
- E. Objectives for reducing hydrocarbon pollution of the watershed:
- Treat and manage urban runoff
- Complete corrective actions for LUST sites and Part 201 sites of environmental contamination
- Encourage proper installation, operation, and maintenance of industrial equipment
- Properly dispose of inoperable/dismantled vehicles currently at unauthorized "junk yards"
- Increase knowledge about storm drains
- F. Objectives for reducing toxic substance pollution of the watershed:
- Identify and complete corrective actions for Part 201 sites of environmental contamination
- Encourage proper installation, operation, and maintenance of industrial equipment
- Complete corrective actions for abandoned landfill
- Determine if chloride levels exceed tolerance limits for aquatic life
- Encourage proper pesticide/herbicide management practices
- G. Objectives for reducing harmful invasive/exotic plant species of the watershed:
- Minimize spread of invasive/exotic species
- H. Objectives for reducing pathogen concentrations of the watershed:
- Discourage undesirable site selection for animal pastures
- Exclude livestock access at impacted sites
- Encourage proper manure management/application
- Encourage proper pet waste disposal
- Encourage proper installation, operation, and maintenance of septic systems
- Encourage sanitary sewers in areas serviced by water utilities
- Implement corrective actions for leaking wastewater treatment sites

- Sample surface waters to determine if *E. coli* values exceed limits set for partial/total body contact recreation.
- I. Objectives for reducing trash pollution of the watershed:
- Educate residents on proper waste disposal
- Clean up impacted areas

RECOMMENDATIONS

Structural, vegetative, and managerial Best Management Practices (BMPs), along with land use policies and Information and Education (I&E) recommendations, have been identified to treat, prevent, and reduce the NPS pollutants of the Sand Creek Watershed. The Sand Creek Watershed Partners and the Rural Subcommittee, in collaboration with the MDEQ and the project manager, selected and reviewed recommendations to meet the goals and objectives identified during this 319 project. Each recommendation addresses the sources and causes of a specific pollutant. Potential project partners, a timeline, and a cost estimate were identified for each recommendation. Increasing storm water runoff storage and treatment, implementing agricultural/urban Best Management Practices, and implementing I&E activities will be the most critical in reducing NPS pollutants and reaching project goals and objectives.

EVALUATION

The planning phase of this project will be evaluated according to the following five project task categories: watershed assessment and characterization, I&E strategy, creation of a system of regional governance, BMP review process and recommendations, and project management. The project evaluation team will use the following evaluation tools during the review process to assess project tasks: observation, interviews, focus groups, surveys, and content analysis of project materials.

During the implementation phase of this project, the success of recommended activities will be evaluated using a two-phase process: (1) that which will assess the effectiveness of I&E tools, and (2) an assessment of physical improvements. In both instances, a Steering Committee will be organized from watershed stakeholders, with the Sand Creek Watershed Partners being a logical source for membership. The Steering Committee will oversee all project activities and will be asked to measure the success of both I&E activities and physical improvements.

SUSTAINABILITY

To ensure that the efforts and outcomes of this project, as well as other ongoing watershed projects in the Grand River Watershed, are more effectively coordinated and prioritized on a comprehensive watershed-wide basis, the Lower Grand River Watershed (LGRW) management plan is anticipating the creation of an ongoing Lower Grand River Watershed Organization. Through input of the Grand River Forum, the LGRW Steering Committee is forming a more comprehensive persisting organization to sustain the future value of this effort and to someday reach a long-term vision adopted for the entire LGRW. Such an organization can also coordinate with the Upper Grand River Watershed Project to ensure harmonization of similar efforts for the entire Grand River Basin.

The Sand Creek WMP will provide the Sand Creek Watershed Partners the details on how to implement recommendations to reach more immediate goals and objectives of the Sand Creek WMP and the longer range visions of the LGRW Management Plan. It is expected that through a new LGRW organization, these sub-basin recommendations will be extrapolated for use and adoption in other rural areas of the LGRW experiencing similar problems. Furthermore, this WMP will be the basis on which Phase II communities will write their Storm Water Pollution Prevention Initiative, which outlines implementation recommendations of the Sand Creek WMP.

CHAPTER 2 INTRODUCTION

The water quality of Sand Creek and its tributaries is affected by many factors and only proper management of land activities will protect this valued resource. This document provides a description of watershed characteristics, identifies sources and causes of watershed pollutants, and makes recommendations as well as provides tools to treat, prevent, and reduce water pollution in the Sand Creek Watershed.

DEVELOPMENT OF THE SAND CREEK WATERSHED MANAGEMENT PLAN (WMP)

The development of the Sand Creek WMP was facilitated through the Lower Grand River Watershed (LGRW) Project, funded by the U.S. Environment Protection Agency (EPA) through Section 319 of the Clean Water Act. This 319 grant was administered by the Michigan Department of Environmental Quality (MDEQ). The Grand Valley Metro Council (GVMC) was awarded the grant and consequently contracted with the Annis Water Resources Institute (AWRI) and Fishbeck, Thompson, Carr, & Huber, Inc. (FTC&H).

The Sand Creek Watershed was chosen for detailed study through the LGRW Project as a pilot project area. Due to the large size of the LGRW, pilot project areas were selected to represent the urban and rural issues of the area. The Buck Creek Watershed, Millennium Park Watershed, and Grand City Watershed were chosen as the urban pilot project areas while the Sand Creek Watershed was selected as a rural/developing pilot project area. The Sand Creek Watershed was chosen because of its strong local support, rural nature, and changing land uses due to urban development. It is expected that the rural subwatersheds in the LGRW will eventually face changing land uses due to growth and development. The Sand Creek Watershed will serve as a model on how to effectively accommodate urban land uses while preserving rural land uses. The product of this pilot project, the Sand Creek WMP, will provide detailed information regarding the sources, causes, and impacts of nonpoint source (NPS) pollutants that typically affect the designated uses of a rural watershed. The management plan will also include recommendations to treat, prevent, or reduce NPS pollution for rural areas.

PUBLIC PARTICIPATION PROCESS FOR DEVELOPING THE SAND CREEK WMP

Grand River Forum meetings, held through the LGRW Project, offered the opportunity for public comment on the management of the LGRW project and its pilot project areas. Over fifty watershed stakeholders from the LGRW attended these public meetings. These meetings provided an opportunity for watershed residents, local decision makers, and watershed coordinators to share their concerns, offer solutions, and provide feedback regarding the management of the Lower Grand River and the pilot project areas. The greatest watershed concerns expressed by participants included impacts from development, bacteria levels, storm water management, sediment pollution, hydrology fluctuations, and wetland protection. Goals and desired uses of the LGRW included recreational use, desirable habitat, and educational opportunities. Participants listed the following steps to reach these goals: smart growth techniques, enforcement of existing regulations, installation of buffer strips, and public education.

The Rural Subcommittee of the LGRW Project was formed to address not only the rural issues in the LGRW but also the rural issues of the Sand Creek Watershed. Members from the Grand River

Forum volunteered to serve on the Rural Subcommittee due to their interest in resource protection of rural areas. Members participated in developing the criteria necessary to select a rural pilot project area using the information contained within the Watershed Information Matrix (WIM). The WIM included information about every subwatershed in the LGRW regarding water quality, watershed planning, land use planning, local participation, and regional planning. Using these criteria, they selected three potential rural pilot project areas, which were brought to the steering committee to be discussed and voted on. After the Sand Creek Watershed was chosen, the planning process began. A physical inventory of the watershed was performed and a watershed tour was held to familiarize subcommittee members with the area and its watershed issues. The physical inventory was used, along with past watershed studies, to identify NPS pollutants. Subcommittee members participated in the review and identification of sources and causes of these watershed pollutants. They also worked in collaboration with the Technical and I&E Subcommittees to recommend structural and vegetative BMPs, policy and management BMPs, and Information and Education (I&E) activities to address watershed pollutants.

The Sand Creek Watershed Partners, the local watershed organization for this subwatershed, was formed in February 2002. The Partners have been involved with several watershed projects to date including two macroinvertebrate inventories, a road/stream crossings inventory, development of a hydrologic model, logo development, as well as development and distribution of several I&E materials. They meet monthly to "Work together to achieve and maintain desired water quality, stream stability, and biological integrity in Sand Creek to benefit current and future generations". The project manager met with this group monthly to solicit their input during the development of the Sand Creek WMP. Similar to the Rural Subcommittee, the Partners reviewed sources and causes of NPS pollutants as well as recommended structural and vegetative BMPs, policy and management BMPs, and I&E activities. In addition, they played a central role in the identification of specific pollution sites and selection of future implementation projects. The Sand Creek Watershed Partners, in collaboration with several project partners, will oversee the implementation of recommended structural and vegetative BMPs, policy and management BMPs. and I&E activities identified during the planning phase of this 319 project. This 319 project and upcoming implementation activities will offer this group an opportunity to build on their past achievements and protect and restore the designated uses of the Sand Creek Watershed.

In regard to the review of the Sand Creek WMP, additional public input was solicited from local units of government, state agencies, watershed residents, and pertinent organizations during a scheduled review held on December 2, 2003. The following organizations participated in the review process or provided comment at some point during WMP development:

- Camp & Cruise
- Chester Township
- City of Walker
- Department of Environmental Quality
- Department of Natural Resources
- Grand Valley State University, Biology Department
- Herman Miller, Inc.
- Marne Lions Club
- Michigan Department of Transportation
- Ottawa County Conservation District
- Ottawa County Drain Commission
- Ottawa County Health Department

- Ottawa County Road Commission
- Sand Creek Watershed Partners
- Subcommittees of the Lower Grand River Watershed Project
- Tallmadge Township
- USDA Natural Resources Conservation Service (NRCS)
- Timberland RC&D
- Watershed residents
- West Michigan Environmental Action Council (WMEAC)
- Wright Township

COORDINATION WITH LOWER GRAND RIVER WMP

The Lower Grand River WMP will address the issues facing this watershed by building on existing efforts in the pilot project areas. The information collected and recommendations made for these areas will be used to address the rural and urban issues facing all subwatersheds of the LGRW. The Grand River Forum will oversee this effort to create a holistic, ecosystem approach to WMP development. They will provide guidance and recommendations for reaching a vision under which the entire watershed will operate. A future LGRW organization will emerge from the planning phase of this 319 project to oversee, guide, and recommend future watershed efforts and sustain the initiative that has been created. Grand River Forum meetings will continue to provide the opportunity for residents, local units of government, watershed coordinators, and other interested individuals to express their concerns and desires for the management of the LGRW. Specifically, the Sand Creek WMP will provide the details on how to implement recommendations to reach the overall goals and objectives of the LGRW Management Plan. The remedies for the impaired rural areas of the Sand Creek Watershed will provide opportunities for other rural and developing areas to evaluate management measures used and determine which management measure would be best for their particular situation.

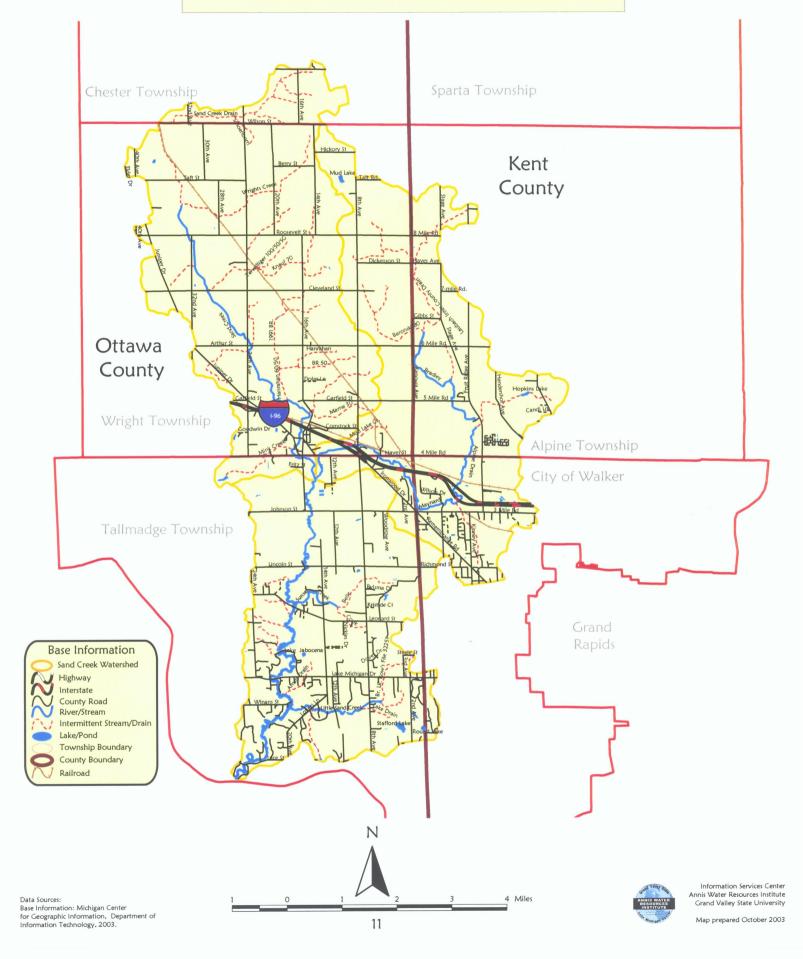
CHAPTER 3 DESCRIPTION OF WATERSHED

3.1 STUDY AREA

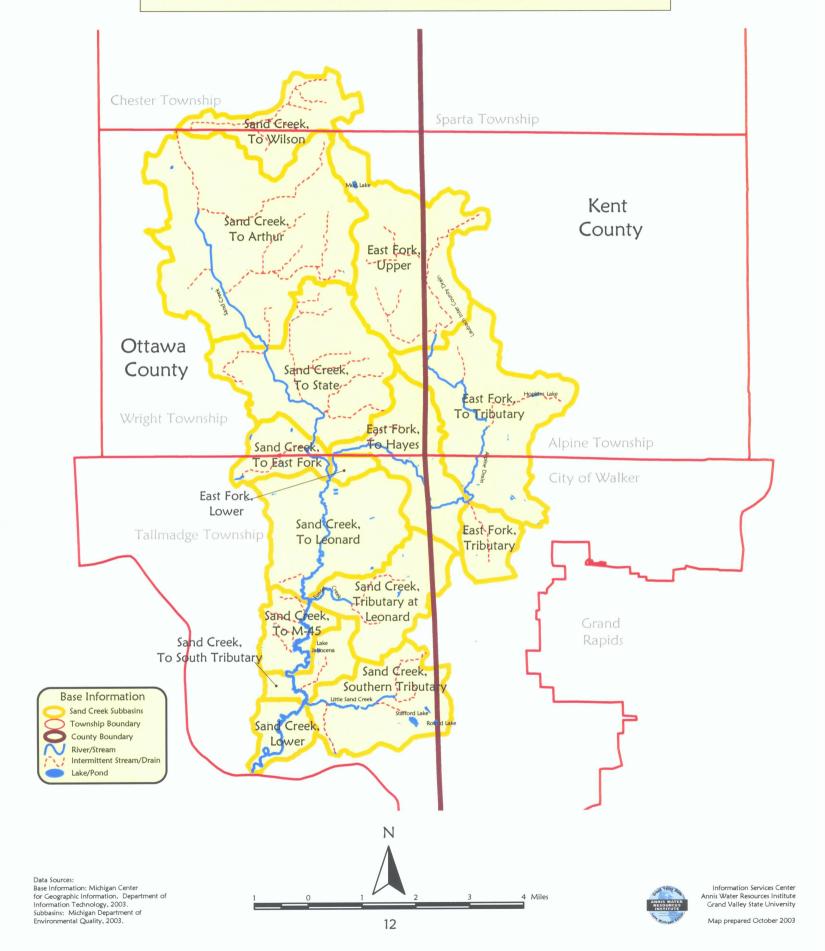
Sand Creek is a third order designated cold water stream approximately 22 miles in length (Figure 1). It begins in the east-central portion of Ottawa County, near Conklin, and has been designated as a trout stream by the Michigan Department of Natural Resources (MDNR 2000). The creek flows through Marne to its confluence with the Grand River, west of Grand Rapids. Approximately 23 streams, most of which are intermittent, and drains flow directly into Sand Creek. Its major tributary is the East Fork, which originates as the Laubach Inter County Drain in Section 11 of Wright Township. The Laubach Drain and the East Fork are 11.5 miles in length and empty into the creek in Section 2 of Tallmadge Township. The following smaller tributaries also flow into Sand Creek: Little Sand Creek, Sunset Creek, Mink Creek, and Wright Creek.

The Sand Creek Watershed drains approximately 55 square miles and covers parts of four townships, one city, and two counties (Table 1). Fifteen subbasins were delineated within the watershed (Figure 2). The watershed itself is one of many subbasins of the Grand River Watershed, the largest watershed with one common river in Michigan. The northern portion is mostly agricultural while the southern portion is a mix of forested, residential, and agricultural areas. The Sand Creek Watershed contains several surface water bodies including: Reardon, Stafford, Carmody, Mud, Hopkins, and Round Lakes as well as Lake Jabocena and Mill Pond. The watershed is crossed by Interstate 96, as well as one railway, and contains 79 road/stream crossings. The Village of Marne and the city of Walker are the only urban centers located within the watershed. Other cities located nearby, but outside the watershed boundary, include Allendale, Coopersville, and Grand Rapids.

TABLE 1: TOWNSHIPS AND COUNTIES LOCATED WITHIN THE SAND CREEK WATERSHED


Township/City	County	Percentage of Watershed within Township
Alpine Township	Kent County	12 %
Chester Township	Ottawa County	3 %
Tallmadge Township	Ottawa County	32 %
Walker, city of	Kent County	8%
Wright Township	Ottawa County	45%

3.2 CLIMATE


The Sand Creek Watershed is located in the Southwest Lower Climatic Division and is approximately 28 miles east of Lake Michigan. Lake Michigan and the prevailing westerly winds produce "lake effect" moderating temperatures throughout most of the year resulting in milder winters and cooler summers. This climate modification contributes to the diversified agriculture seen throughout western Michigan. Moderately warm temperatures dominate summers with a 1951-1980 average of only 12 days per year exceeding the 90°F mark. Prolonged periods of hot, humid weather or extreme cold are seldom experienced. The highest average monthly maximum temperature is 88.5°F while the lowest average monthly minimum temperature is 3.1°F. The average percent possible sunshine varies from 21% for December to 64% for July, and averages 46% annually. The prevailing wind blows in a southwesterly direction and averages about 10

mph. The 1 P.M. relative humidity averages 62% annually and varies from 53% for May to 75% for December (MDA 2003).

Study Area Sand Creek Watershed

Subbasins Sand Creek Watershed

3.3 PHYSIOGRAPHIC FEATURES

Physiographic features of the Sand Creek Watershed are divided into three types: geology, topography, and soils.

GEOLOGY & TOPOGRAPHY

Elevations within the Sand Creek Watershed vary from a low of approximately 590 feet near the stream's confluence to a high of about 940 feet near 8th Ave. and Harding Street in the northern portion of the watershed (Figure 3). Most of the watershed is composed of gently rolling hills. The majority of steeper slopes are located close to the creek at the southern end of the watershed (Figure 4). Stream valley character is primarily glacial and unconfined with channel flows unconfined in a relatively broad glacial-fluvial valley (MDNR 2000). Over 2/3 of the Sand Creek Watershed quaternary geology is made up of end moraines of fine-textured till (37%) and glacial outwash sand/gravel (38%). End moraines of fine-textured till are non-sorted glacial debris occurring in narrow linear belts marking former stillstands of ice-sheet margin. This also includes some small areas of ground moraine as well as outwash. Glacial outwash sand/gravel is a pale brown to pale reddish brown, fine to course sand, and well-stratified occurring as fluvial terraces along present and abandoned drainage ways. Also included in this category are a few narrow belts of Holocene alluvium occurring below outwash terraces alongside present streams (MDNR 1982).

SOILS

A variety of different soils with many different properties make up the Sand Creek Watershed. Over 1/3 of the watershed consists of the Nester and Kawkawlin soil series. The Kawkawlin series consists of somewhat poorly drained soils that occur on uplands and till plains while the Nester series consists of well drained and moderately well drained soils that occur on uplands and along drainage ways on lake plains (NRCS-USDA 1972). Both series have a loamy texture and the Nester series has a clay loam texture in some areas. Soil textures of the Sand Creek Watershed are shown in Figure 5.

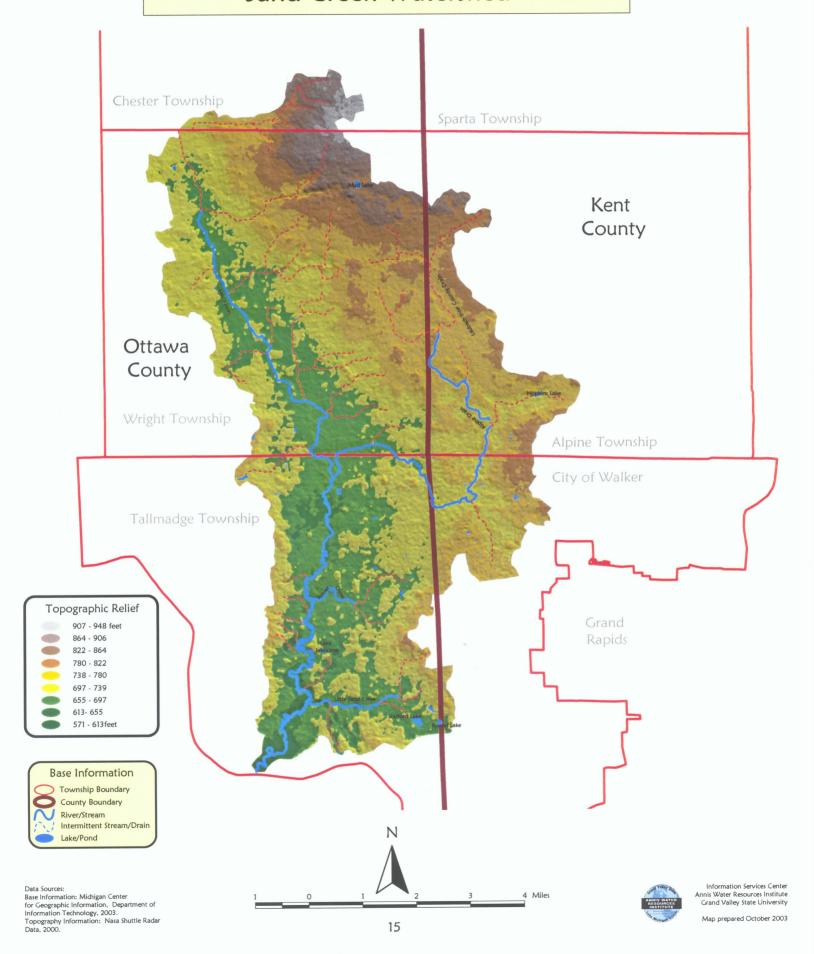
Not only can soils be classified by soil texture, but also by hydrologic soil groups. Hydrologic soil groups of the Sand Creek Watershed are shown in Figure 6. These groupings differentiate soils primarily based on infiltration rates, which in turn affect runoff potential. Nearly half (46.3%) of the Sand Creek Watershed consists of Group C soils, which have slow infiltration rates. Group B soils, soils having moderate infiltration rates, represent almost one quarter (21.3%) of the watershed. A soil series can also be classified as hydric or non-hydric. Hydric soils are those that are saturated, flooded, or ponded long enough during the growing season to develop anaerobic conditions in the upper soil horizons. Hydric soils make up nearly 20% of the Sand Creek Watershed. Erosion potential for each soil series is shown in Figure 7. The K-value is a soil erodibility factor representing the susceptibility of erosion, with higher values meaning greater erosion potential. Soils high in clay have low K-values (0.5-0.15) and are resistant to detachment. Medium textured soils, such as loam and silt loam, have much higher K-values (0.25-0.4), and soils with high percentages of silt have the highest K-values (greater than 0.4) $(NRCS-USDA\ 2003)$. Over half (60.2%) of the watershed has a high erosion potential with K-values ranging from 0.3-0.43.

Using soil information, maps were developed showing areas with prime farmland soils (Figure 8) and development limitations (Figure 9) within the Sand Creek Watershed. The U.S. Department

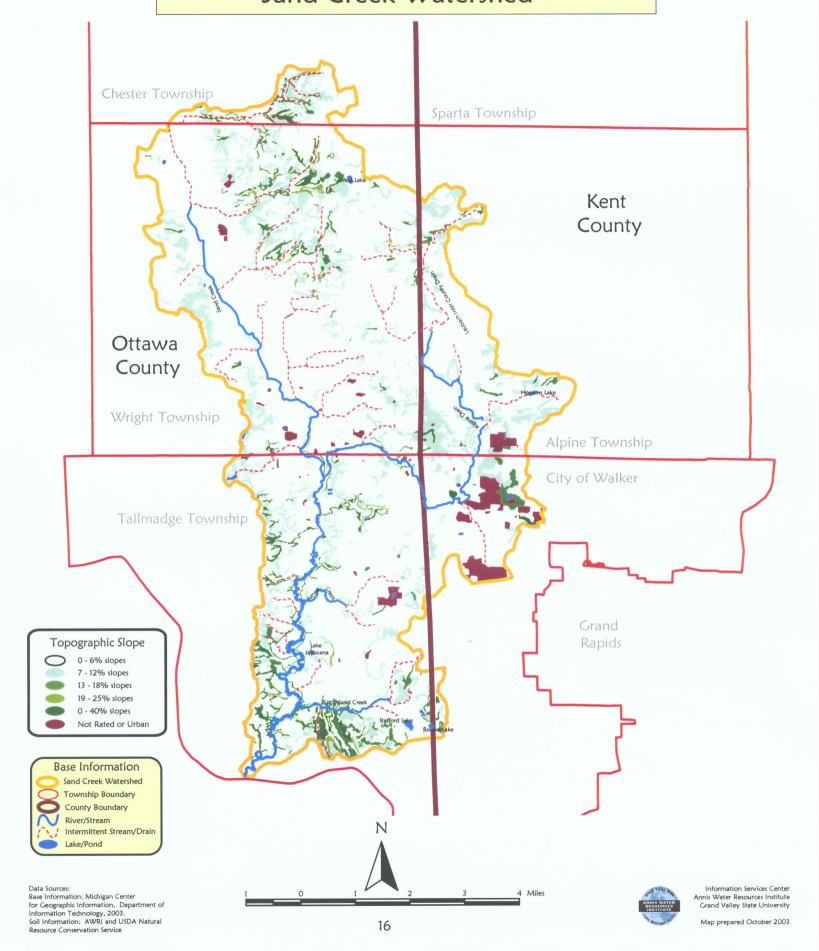
of Agriculture (USDA) Natural Resources Conservation Service (NRCS) defines prime farmland as land with the best combination of physical and chemical characteristics for producing crops. The NRCS-USDA has identified whether a soil series is prime farmland according to three different categories: 1) prime farmland 2) prime farmland only if drained, 3) not prime farmland if flooded more than occasionally during the growing season. Sand Creek Watershed contains nearly 60% of soils with prime farmland capabilities. Soils suitable for development were based on criteria developed by the USDA-NRCS. Drainage, permeability, slope, erosion hazard, stability, and frequency of flooding all have to be considered in determining the suitability of a site for development (NRCS-USDA 1972). The NRCS-USDA has taken these characteristics of soils and ranked each series as suitable, moderately suitable, or not suitable for development. Builders can use this information to help determine what sites are suitable for homes and other commercial buildings. Over 50% of the Sand Creek Watershed is not considered suitable for development.

Table 2 provides the soil texture, hydrologic group, hydric information, and acreage for each soil series in the Sand Creek Watershed. Descriptions of each hydrologic group are provided below.

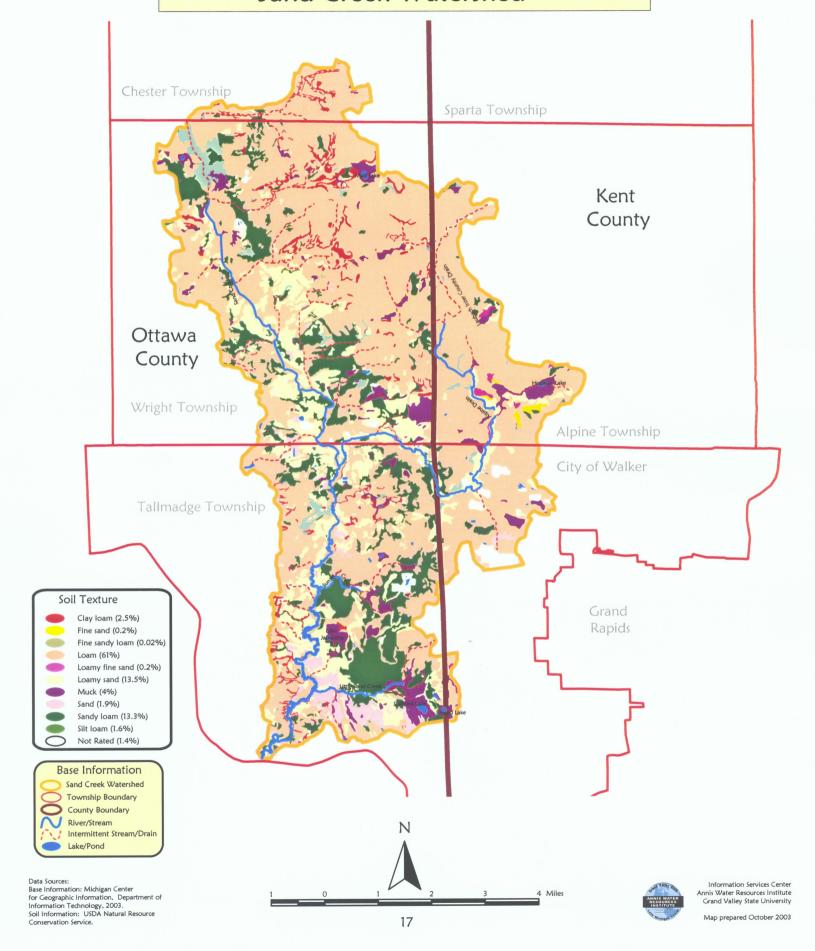
Hydrologic Group A - (Low runoff potential) Soils having high infiltration rates even when thoroughly wetted and consisting chiefly of deep, well to excessively drained sands or gravels.

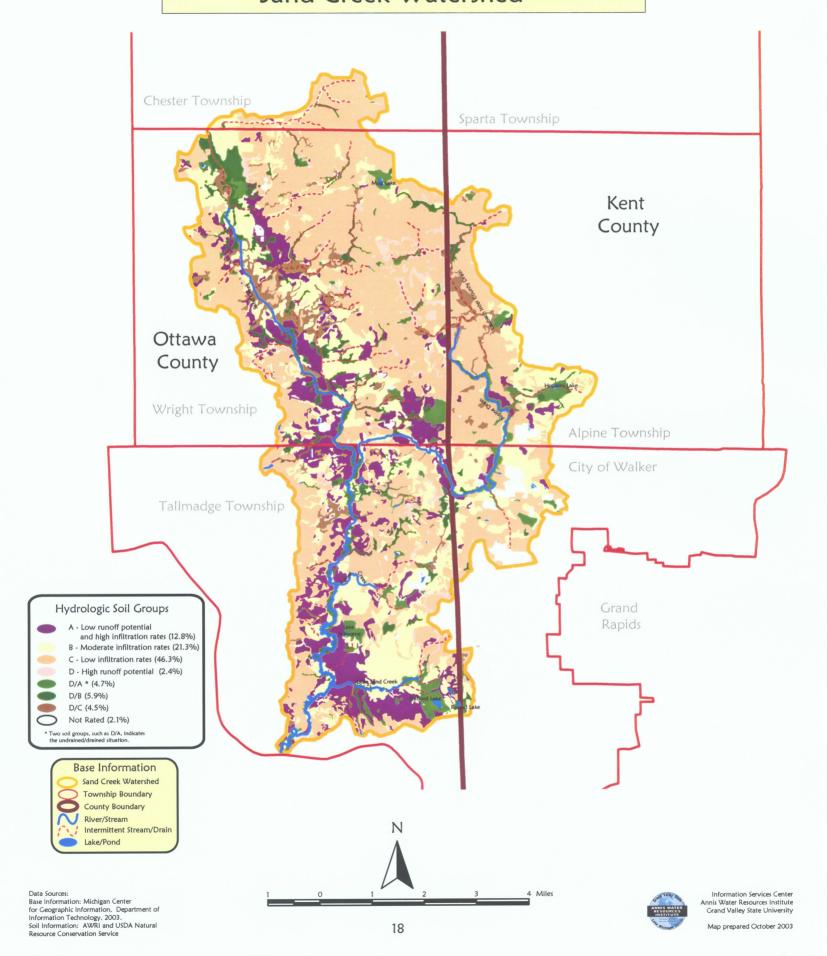

Hydrologic Group B – Soils having moderate infiltration rates when thoroughly wetted.

Hydrologic Group C – Soils having slow infiltration rates when thoroughly wetted.

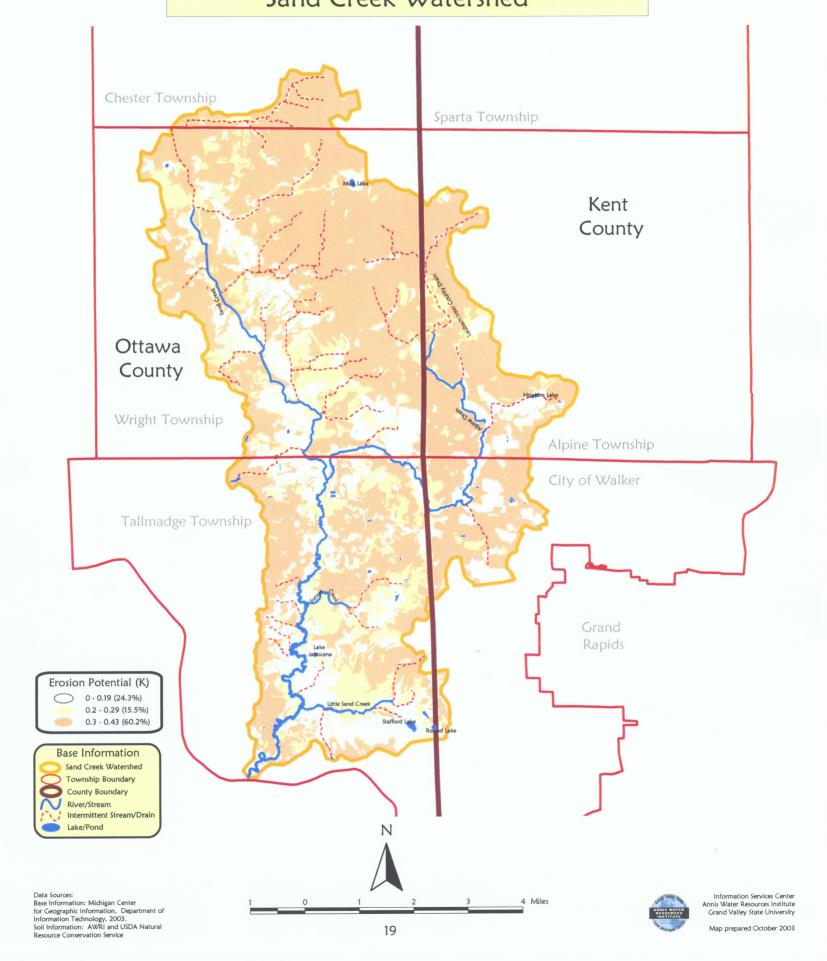

Hydrologic Group D - (High runoff potential) Soils having very slow infiltration rates when thoroughly wetted.

Soils can be classified as belonging to two groups, such as D/A. The first group shown is the natural group that the soil series is usually classified under and the second group shown is the probable maximum improvement that can be made through artificial drainage, land use, or other factors.


Topographic Relief Sand Creek Watershed


Topographic Slope Sand Creek Watershed

Soil Texture Sand Creek Watershed



Hydrologic Soil Groups Sand Creek Watershed

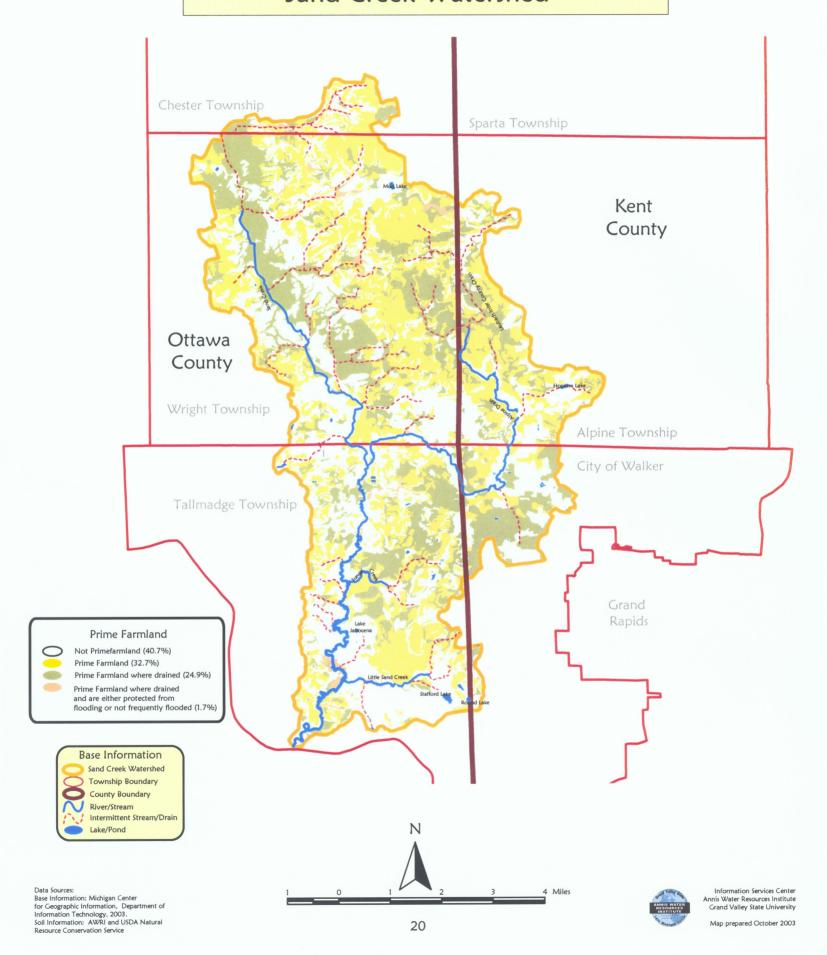


Figure 7.

Erosion Potential (K) Sand Creek Watershed

Prime Farmland Soils Sand Creek Watershed

Figure 9.

Soil Suitable for Development

Sand Creek Watershed

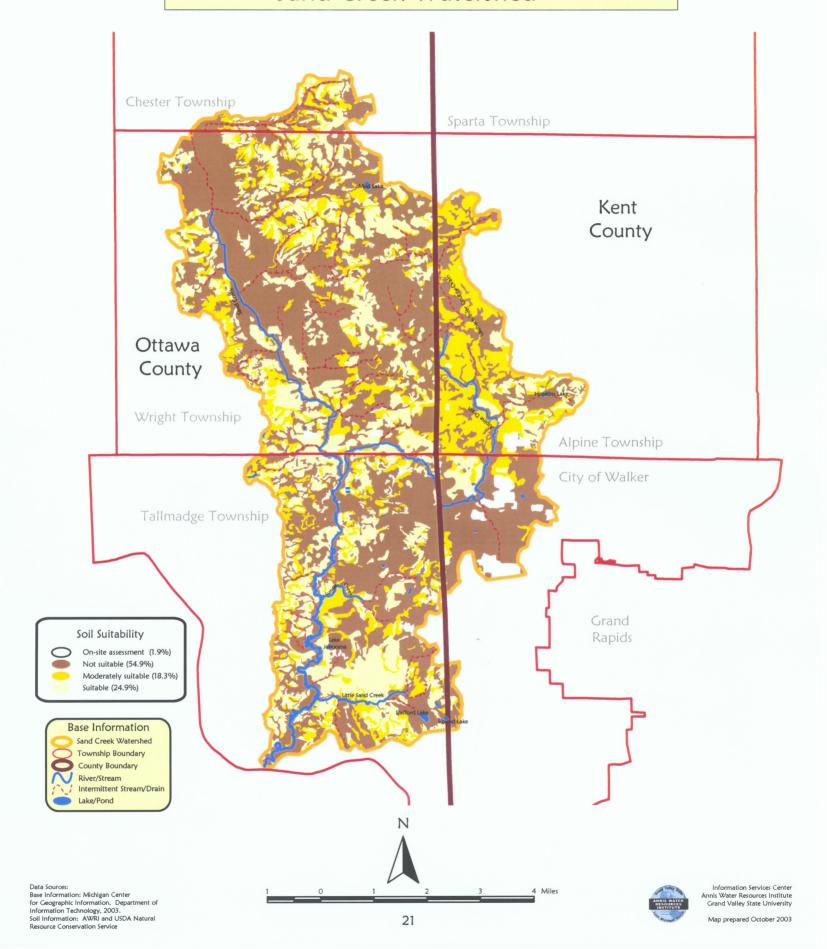


TABLE 2: SOILS IN THE SAND CREEK WATERSHED

Soil Name	Soil Texture	Hydrologic Group	Hydric	Acres
Adrian	Muck	D/A	Y	127.07
Adrian-Houghton	Muck	D/A	Y	121.33
Algansee	Loamy Sand	В	Y	262.01
Allendale	Sandy Loam	В	N	75.02
Au Gres	Loamy Sand Sandy Loam	В	N	39.30
Belding	Sandy Loam	В	N	1037.00
Belleville	Loamy Sand	D/B	Y	15.06
Bowers	Loam	С	N	73.06
Boyer	Loamy Sand	В	N	29.60
Breckenridge	Sandy Loam	D/B	Y	144.53
Brevort	Sandy Loam	D/B	Y	124.34
Bruce	Loam	D/B	Y	234.11
Capac	Loam	C	N	1059.75
Carlisle	Muck	D/A	Y	766.54
Ceresco	Loam	В	Y	365.28
Chelsea	Loamy Sand	A	N	376.00
Cohoctah	Loam	D/B	Y	663.45
Colwood	Silt Loam	D/B	Y	8.24
Croswell	Sand	A	N	17.60
Dumps	Not Rated	Not Rated	Not Rated	14.786
Edwards	Muck	D/B	Y	71.140
Fox	Sandy Loam	В	N	189.85
Gilford	Sandy Loam	D/B	Y	145.58
Gladwin	Sandy Loam	A	N	504.41
Glendora	Sandy Loam	D/A	Y	302.43
Glynwood	Loam	C	N	3.35
Granby	Loamy Sand	D/A	Y	28.71
Gravel Pits	Not Rated	Not Rated	Not Rated	115.26
Hettinger	Loam	D/C	Y	841.97
Houghton	Muck	D/A	Y	268.22
Iosco	Loamy Sand	В	N	766.70
Ithaca	Loam	C	N	532.91
Kalkaska	Sand	A	N	12.85
Kawkawlin	Loam	C	N	4758.82
Kibbie	Loam	В	N	483.35
Lacota	Silt Loam	D/B	Y	299.53
Linwood	Muck	D/A	Y	10.29
Made Land	Not Rated	Not Rated	Not Rated	63.03
Mancelona	Loamy Sand	A	N	603.99
Marlette	Loam	В	N	1259.406
Marsh	Not Rated	Not Rated	Y	1.500
Matherton	Loam	B	N	401.76
Menominee	Loamy Sand	A	N	371.02
Metamora	Sandy Loam	В	N	124.40
Metea	Loamy Sand	В	N	75.17
Montcalm	Loamy Sand	A	N	1638.811
Morley	Loam	C	N	1.938
Nester	Loam, Clay Loam	C	N	7802.185
Newaygo	Sandy Loam	В	N	3.093
		11.7	I I N	1 1.1.1.7 1

TABLE 2: SOILS IN THE SAND CREEK WATERSHED CONT'D

Soil Name	Soil Texture	Hydrologic Group	Hydric	Acres
Oshtemo	Sandy Loam	В	N	626.87
Owosso	Sandy Loam	В	N	43.39
Palms	Muck	D/A	Y	29.50
Parkhill	Loam	D/B	Y	54.35
Perrinton	Loam	С	N	1909.88
Pewamo	Loam	D/C	Y	308.76
Pinconning	Loamy Sand	D/B	Y	18.91
Pipestone	Sand	В	N	28.06
Plainfield	Sand	A	N	1.256
Richter	Sandy Loam	В	N	298.639
Rimer	Loamy Fine Sand	С	N	15.65
Rubicon	Sand	A	N	605.03
Saylesville	Silt Loam	С	N	10.801
Scalley	Sandy Loam	В	N	35.937
Selfridge	Loamy Sand	В	N	85.16
Selkirk	Loam	С	N	19.40
Shoals	Loam	С	N	37.04
Sims	Loam	D	Y	851.60
Sloan	Loam	D/B	Y	260.65
Spinks and Montcalm	Loam Sand	A	N	135.39
Spinks	Loamy Sand	A	N	105.59
Thetford	Loamy Sand	A	N	49.85
Tonkey	Sandy Loam	D/B	Y	43.08
Tuscola	Fine Sandy Loam	В	N	7.89
Ubly	Sandy Loam	В	N	1202.432
Udipsamments	Not Rated	Not Rated	Not Rated	12.257
Udorthents	Loam	Not Rated	Not Rated	185.005
Urban Land	Not Rated	Not Rated	N	263.85
Wallkill	Silt Loam	D/C	Y	209.19
Warners	Muck	D/C	Y	23.40
Wasepi	Sandy Loam	В	N	18.83
Woodbeck	Silt Loam	В	N	19.60
Total Acres				34812.174

3.4 POPULATION

The total number of residents living in the Sand Creek Watershed is approximately 15,484 people. This is a high-end estimate calculated from census 2000 data assuming uniform density across each incorporated township. The majority of the population resides in the lower portion of the Sand Creek Watershed. In the lower eastern portion, the city of Walker contains the most heavily populated region with an average of 391 to 868 people per square mile. Conversely, townships further from the city of Grand Rapids, in the upper region of the Sand Creek Watershed, are more sparsely populated with only 0 to 91 people per square mile (Figure 10).

The population in the Sand Creek Watershed is increasing, but not uniformly, according to the 1960 and 2000 census data. The eastern portion of the watershed is experiencing the greatest growth, which includes the city of Walker and Alpine Township (north of the city of Walker), at a 9.4 to 41.7% change. The extreme upper portion and most of the lower portions of the watershed are seeing a 0.1 to 9.3% change while the upper western region shows no overall change (Figure 11).

Population Density (2000) Sand Creek Watershed

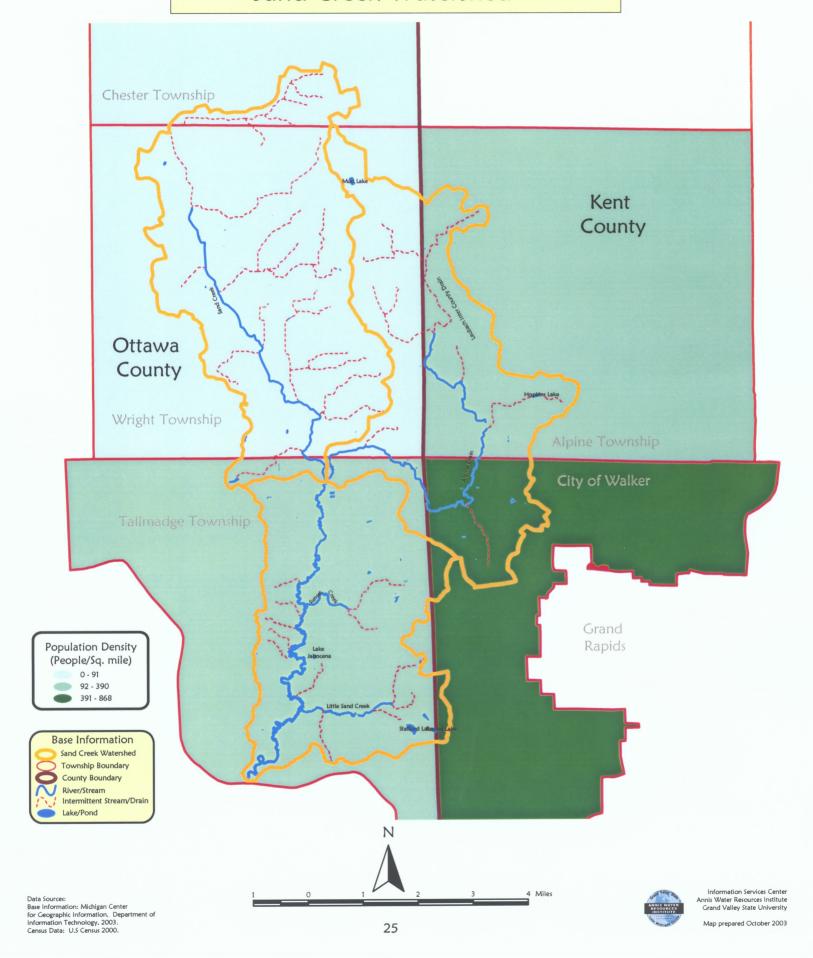
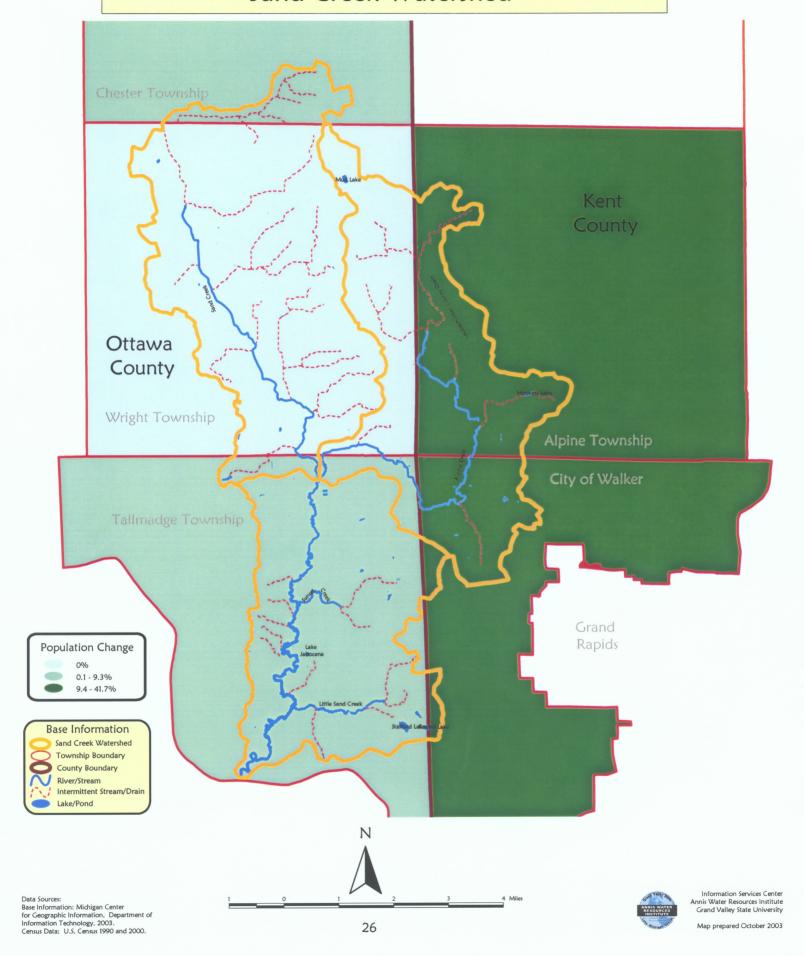
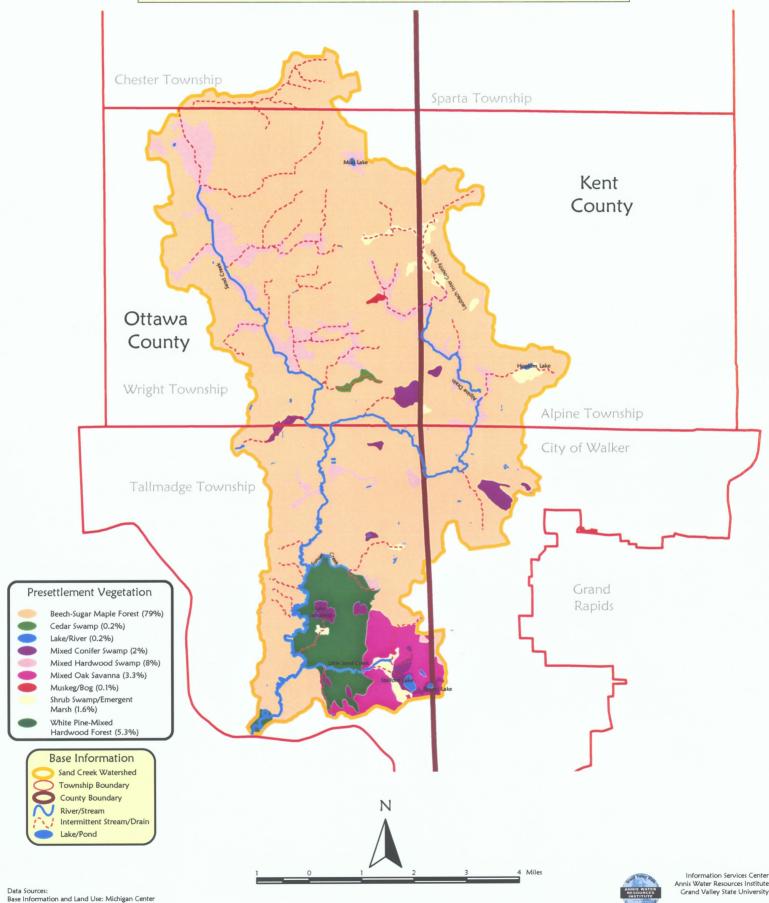



Figure 11.

Population Change (1990-2000) Sand Creek Watershed

3.5 LAND USE

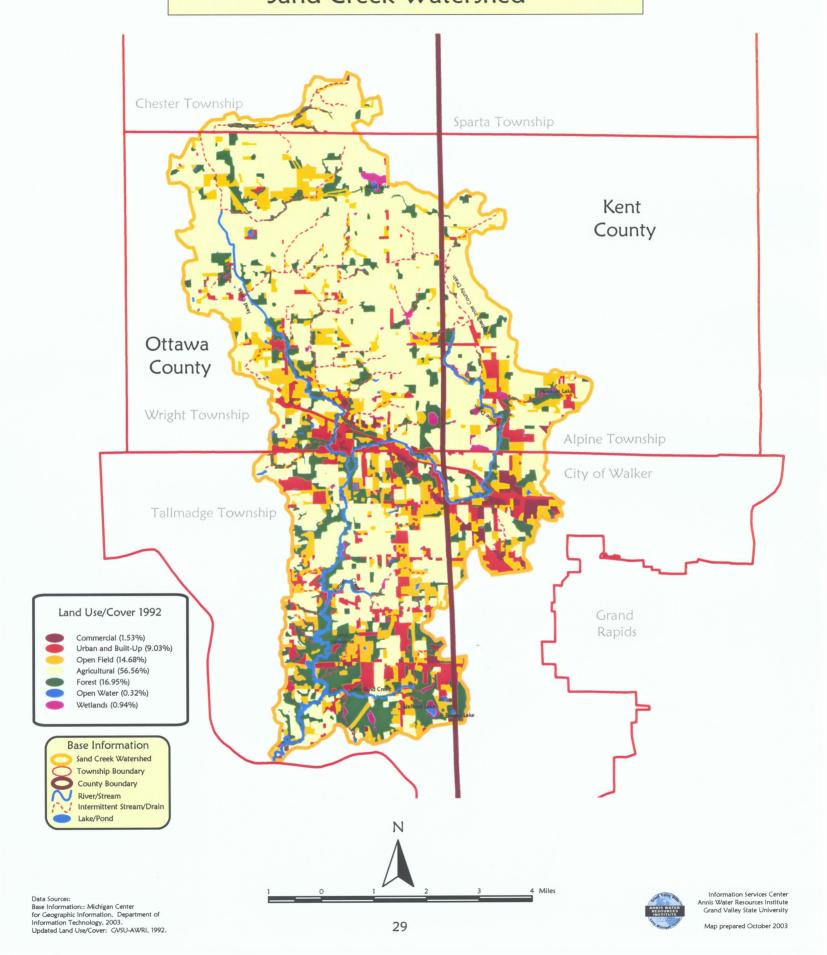
Prior to widespread European settlement in the 1800's, the dominant native vegetation of the Sand Creek Watershed was beech-sugar maple forest. Beech-sugar maple forest covered nearly all but the lower eastern portion of the watershed totaling 79% of the land area (Figure 12). The remaining presettlement vegetation consisted of forest and swamp land. White pine-mixed hardwood forests (5.3%) and mixed oak savanna (3.3%) primarily grew in the lower eastern portion of the watershed. Mixed hardwood swamps (8%) built up along the upper reaches and tributaries of Sand Creek. Other presettlement vegetation found scattered throughout the region included: mixed conifer swamp (2%), shrub swamp/emergent marsh (1.6%), cedar swamp (0.2%), lake/river (0.2%), and muskeg/bog (0.1%).

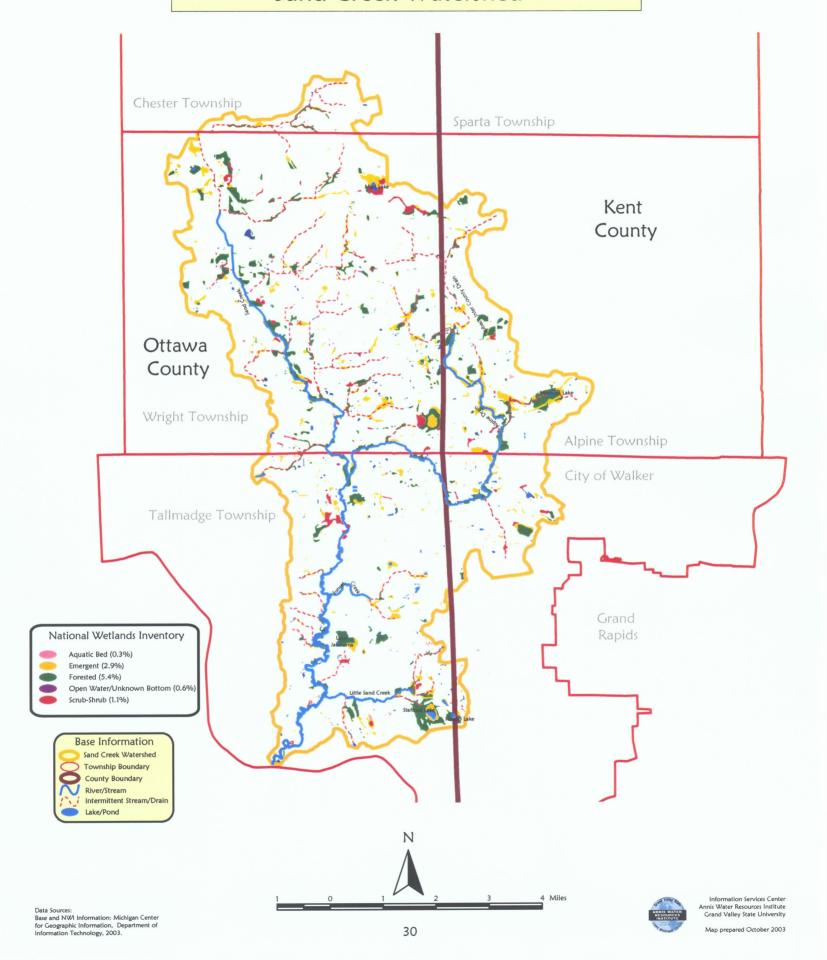

The landscape has changed significantly since presettlement. The predominant land use in 1992 was agricultural (56.56%) which covered the majority of the watershed (Figure 13). Forests (16.95%) were found mainly in the lower third of the watershed, while commercial (1.53%), as well as urban and built up (9.03%) land uses, were found primarily in the lower two thirds of the watershed. Wetlands (.94%) and open fields (14.68%) speckled the region. The remaining land cover consisted of open water (0.32%).

The wetland areas that occur throughout the watershed are broken down into specific types as classified by the National Wetland Inventory (Figure 14). Some of the wetland areas, particularly the forested wetlands, are not classified as wetlands in the land use categories noted above, hence discrepancies occur in the total percent of wetland areas. According to the National Wetland Inventory, the majority of the wetland areas are forested, covering 5.4% of the watershed. Emergent wetlands (3%) are found away from Sand Creek and up around the tributaries. The additional wetland areas consist of: scrub-shrub (1.1%), open water/unknown bottom (0.6%), and aquatic bed (0.03%). Figure 15 shows the categories of existing wetlands, similar to Figure 14, but also indicates areas for potential wetland restoration: areas with hydric soils and presettlement wetlands.

Figure 12.

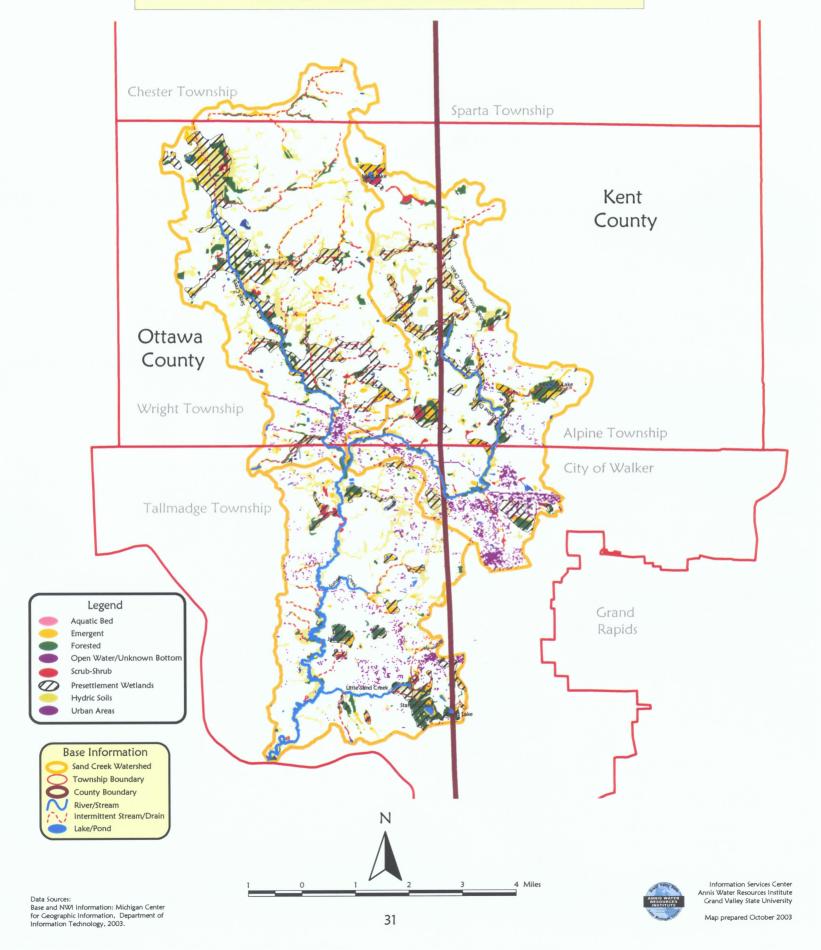
Presettlement Vegetation


Sand Creek Watershed


for Geographic Information, Department of Information Technology, 2003.

28

Figure 13. 1992 Land Use/Cover Sand Creek Watershed



National Wetlands Inventory Sand Creek Watershed

Wetland Resources

Sand Creek Watershed

3.6 LOCAL WATERSHED AGENCIES AND INTEREST GROUPS

The Sand Creek Watershed has benefited from the involvement of local watershed agencies and interest groups. The following table includes those agencies and groups that have assisted in watershed activities in the Sand Creek Watershed (Table 3).

TABLE 3: LOCAL WATERSHED AGENCIES & INTEREST GROUPS

	Community Township / City	Uninomitica/Oncominational
Statewide or Regional Assistance	County/Township/City Assistance	Universities/Organizations/ Businesses/Interested Parties
II. is a figure December of Assistance		
United States Department of Agriculture	Chester Township	Annis Water Resources Institute
Natural Resources Conservation Service	Josephine Kelly	Grand Valley State University
Timberland Resource Conservation & Development	19340 32nd Ave.	Laurie Beth Nederveld
Philip Dakin	Conklin, MI 49403	740 West Shoreline Drive
6655 Alpine Ave NW, #102172	616-899-5544	Muskegon, MI 49441
Comstock Park, MI 49321	chester.twp@gte.net	616-331-3749
616-784-1090		nedervla@gvsu.edu
phil.dakin@mi.usda.gov		
United States Department of Agriculture	City of Walker	Center for Environmental Study
Natural Resources Conservation Service	Engineering Department	Jane Secord
Ottawa County Conservation District	Mark Rambo	528 Bridge NW, 1-C
Scott Kenreich	4243 Remembrance Rd NW	Grand Rapids, MI 49504
16731 Ferris St	Walker, MI 49544	616-988-2854
Grand Haven, MI 49417	616-453-6311	ces1@cesmi.org
616-842-5869	mrambo@ci.walker.mi.us	
scott.kenreich@mi.usda.gov		
Michigan Department of Environmental Quality	Ottawa County Conservation District	Grand Valley State University
Quality Hydrologic Studies Unit	Peggy Weick	Biology Department
Dave Fongers	16731 Ferris St	Neil MacDonald
Constitution Hall	Grand Haven, MI 49417	1 Campus Dr
525 W. Allegan	616-846-8770 ext 5	Allendale, MI 49401
P.O. Box 30458	peggy-weick@mi.nacdnet.org	(616) 331-2697
Lansing, MI 48909-7958	F-983	macdonan@gvsu.edu
517-373-0210		inaccionan e groundu
fongersd@michigan.gov		
Michigan Department of Environmental Quality	Ottawa County Drain Commission	Land Conservancy of West Michigan
Geological and Land Management Division	Linda Brown	Doug Powless
Rob Zbiciak	414 Washington St, Room 107	1345 Monroe Ave NW
Constitution Hall	Grand Haven, MI 49417	Grand Rapids, MI 49503
525 W Allegan St	616-846-8220	616-451-9476
P.O. Box 30458		lcwm@naturenearby.org
	lbrown@co.ottawa.mi.us	icwine naturenear by org
Lansing, MI 48909-7958		
517-241-9021		
zbiciakr@michigan.gov	0" G + P 1G + 1	V V CI 1
Michigan Department of Environmental Quality	Ottawa County Road Commission	Marne Lions Club
Surface Water Quality Division	Steve Van Hoeven	Rodney Prys
Janice Tompkins	PO Box 739	1580 Arch St
350 Ottawa Ave NW	Grand Haven, MI 49417	Marne, MI 49435
Grand Rapids, MI 49503	616-850-7222	616-677-3282
616-356-0268	svanhoeven@ottawacorc.com	delrodsr@aol.com
tompkinsj@michigan.gov		
Michigan Department of Natural Resources	Tallmadge Township	Sand Creek Watershed Partners
Fisheries Division	Richard Edmonds	c/o Linda Brown
Amy Harrington	O-1451 Leonard St	414 Washington St, Room 107
195 6 Mile Rd NE	Grand Rapids, MI 49544	Grand Haven, MI 49417
Comstock Park, MI 49321	616-677-1248	616-846-8220
616-784-1808	lcook@tallmadge.com	lbrown@co.ottawa.mi.us
Michigan Department of Transportation	Wright Township	West Michigan Environmental Action Council
Tim Redder	Mary Ledford	1514 Wealthy St SE, Suite 280
425 W Ottawa St	P.O. Box 255	Grand Rapids, MI 49506
P.O. Box 30050	Marne, MI 49435	616-451-3051
Lansing, MI 48909	616-677-3048	info@wmeac.org
616-451-4595	wrighttwnshp@netzero.com	
reddert@michigan.gov	G x	

CHAPTER 4 REPORTED CONDITION OF THE SAND CREEK WATERSHED

The project manager, Sand Creek Watershed Partners, and Rural Subcommittee of the Lower Grand River Watershed Project evaluated past and current studies of the Sand Creek Watershed. This information was used to assess water quality and problematic locations within the watershed. These studies identify point source and NPS pollutants from agricultural, residential, urban, and industrial areas of the watershed. NPS pollution refers to pollution that originates from sources that cannot be defined as discrete points, such as agricultural areas, residential lawns, and parking lots.

4.1 CONDITIONS REPORTED IN PREVIOUS STUDIES

MICHIGAN RIVERS INVENTORY

According to the Michigan Rivers Inventory (MRI) database, Sand Creek is groundwater driven with very high baseflow. The water chemistry is eutrophic with moderate to high nutrients. Slopes are low, roughly 4-10 ft/mile. Water temperature is predicted as cool (19-22 °C), on average, with moderate variation (6-11°C), based on July temperatures. However, according to the categories used in the model, thermometers placed in Sand Creek by AWRI staff reveal cold mean temperatures (14-19 °C) with low variation (2-6°C) for July 2003 and cold to cool mean temperatures (14-22°C) with low variation (2-6°C) for August 2003. Therefore, water temperatures in Sand Creek may be colder with less variation than predicted by the model. Further studies would need to be performed to determine whether summer temperatures for 2003 were typical.

The Michigan Rivers Inventory, which provided the above information, is a long-term, collaborative research effort established in 1988 by scientists from the Institute of Fisheries Research, Michigan Department of Natural Resources (IFR/MDNR) and the School of Natural Resources and Environment, University of Michigan (SNRE/UM). Initially a Dingell-Johnson funded inventory project directed by Dr. Paul Seelbach (MDNR) and Dr. Mike Wiley (SNRE/UM), the collaboration has grown to include active scientists from multiple research institutions. The MRI focuses on the development of: 1) a regional, spatially explicit, inventory framework; 2) collaboratively managed research database, and 3) scientific models and methods for studying the large-scale ecology of Michigan's rivers. The MRI database currently includes site and catchment-level data for 700+ study locations linked by an extensive geographic information system (GIS). This combination of a GIS and extensive field inventory database is designed to provide the ability to both describe and model key features of the biology, hydrology, and water quality of Michigan's major river systems.

MDEQ BIOLOGICAL ASSESSMENT

The Great Lakes Environmental Assessment Section (GLEAS) of the MDEQ performed a biological assessment of Sand Creek on August 26, 1993 and September 16, 1996. The Surface Water Quality Division of the MDEQ requested the original survey in order to assess the potential impacts on the watershed from changing land uses and urbanization. The second survey was requested by The Land and Water Management Division (LWMD) to assess potential

impacts associated with illicit periodic water withdrawals by a private landowner for crop irrigation. Both surveys were performed according to the methods outlined in GLEAS Procedure No. 51 (MDEQ 1997) and results were reported in a May 2000 Staff Report (Appendix A).

Biological assessments were performed at 3 locations during the 1993 survey, approximately 11, 5.5, and 3 miles upstream of the creek's mouth and located at Arthur St., Lincoln St., and M-45 stream crossings. Two stream locations were sampled during the 1996 survey, one upstream (Cleveland St. crossing) and one downstream (Arthur St. crossing) of the illicit water withdrawal site. Evaluations of the fish community, macroinvertebrate communities, and aquatic habitat were performed for each location. Both surveys indicated that the upstream sites located at Cleveland and Arthur stream crossings were more degraded than the downstream sites located at Lincoln St. and M-45 crossings. GLEAS staff indicated that the degradation of the upstream locations was due to improper agricultural land use practices and historical channelization activities and contributed to the reduction in habitat for fish and aquatic macroinvertebrates. Staff suggested that these factors, mentioned above, contributed to the following conditions noted during the surveys: high levels of embeddedness and bottom deposition, channel/habitat homogeneity, reduction of sensitive species, and a general shift toward tolerant macroinvertebrate species. The dewatering of the stream channel for irrigation, which was occurring at the time of the 1996 survey, was also noted as a cause and the landowner was forced to install a weir to maintain baseflow conditions downstream. GLEAS staff indicated that the higher diversity of fish and macroinvertebrate species noted at the downstream locations was attributed to a more heterogeneous and stable stream channel, inputs from the East Fork and smaller tributaries, and a lack of historical channelization. Future survey activity was recommended to determine if the installation of the weir enabled the Arthur stream crossing to approach the higher water quality condition of the downstream sites.

AWRI ASSESSMENT OF WATER QUALITY AND AQUATIC HABITAT

The Annis Water Resources Institute (AWRI) completed a report in January 1996 providing an overview of the Sand Creek Watershed, including recommendations for its protection and enhancement. This report was the result of the Grand River Watershed Project funded by the Grand Rapids Foundation, the W.K. Kellogg Foundation, and the Frey Foundation. Geologic, geographic, and demographic characteristics of the watershed were reviewed and water chemistry, habitat, and biota of Sand Creek were assessed. This information was used to describe current water quality conditions, existing problems, and possible threats to the watershed.

In summary, AWRI project staff concluded that the water quality and aquatic habitat of Sand Creek was fair to poor, with fish and macroinvertebrate populations that suggested marginal to poor water quality. Nonpoint/point source pollution sites threatening the water quality of Sand Creek Watershed included the following:

- Suburban Landfill (abandoned),
- Leaking Underground Storage Tanks (LUSTs),
- Several oil and gas drilling sites,
- Wright Township Wastewater Storage Lagoon,
- Aeration and seepage lagoon of the Alpine Meadows Mobile Home Park, and
- Several additional sites of environmental contamination.

The extent of impact on the stream's water quality from any of these sites had not yet been determined. Other NPS pollutants included increased amounts of silt and sand sediment in the

stream channel. Inadequately maintained road/stream crossings were contributing to erosion and the sedimentation process at several sites. Siltation had contributed to the loss of habitat and fishery food sources. The greatest potential threat to water quality was indicated as rapid fluctuation in the stream's hydrology that resulted from excessive precipitation runoff. These hydrologic changes typically resulted in increases in sedimentation and degradation of the benthos from storm water runoff.

A strategy to improve the stream's present water quality and reduce NPS pollution included both short and long term objectives. Short-term objectives included establishment and/or maintenance of riparian buffers, stabilization of stream channels, and improvement or proper maintenance of road/stream crossings. Also discussed were environmental education and the implementation of proper chemical and waste management practices for agricultural landowners and homeowners. In addition, the creation of volunteer groups to monitor stream conditions and assist local officials in developing water quality protection measures was noted.

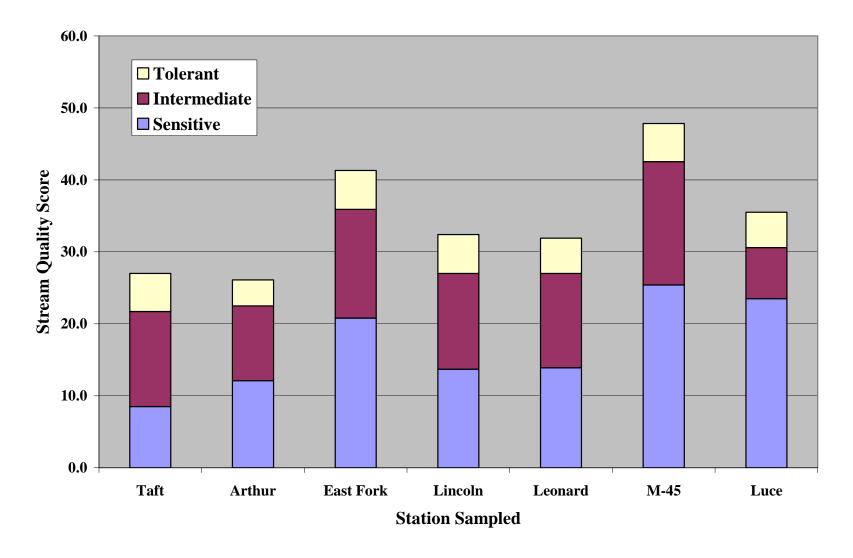
Long-term objectives included the control of storm water runoff. Local units of government were encouraged to modify existing zoning ordinances and master plans, thereby incorporating watershed-wide pollution prevention practices and stewardship. It was suggested that implementing such management options would instill local ownership, involvement, and protection as well as maintain and enhance water quality of the Sand Creek Watershed.

TOTAL MAXIMUM DAILY LOADS

The MDEQ is responsible for identifying water bodies within the state of Michigan that are not meeting Water Quality Standards (WQS). WQS are state rules established to protect surface waters of the state. Section 303(d) of the federal Clean Water Act and the U.S. Environmental Protection Agency (EPA) require states to develop Total Maximum Daily Loads (TMDL) for surface waters that do not meet WQS. A TMDL is used as a short hand acronym to describe the process used to determine how much of a pollutant load a waterbody can assimilate. To identify these waterbodies, a study is completed to determine the amount of a pollutant that can be put in a waterbody from point sources and nonpoint sources and still meet WQS, including a margin of safety. Waterbodies not meeting WQS are placed on the nonattainment list published as part of a 303(d) Report.

After performing a biological community assessment of the fish community, the MDEQ rated the fish community of Sand Creek as poor from Wilson Road downstream to its confluence with the Grand River. Sand Creek was placed on the nonattainment list published as part of the 2002 303(d) Report (MI/DEQ/SWQ-02/013). To note, the specific pollutants, impairing the cold water fishery and exceeding WQS, and their TMDLs have not been determined. After approval from the US EPA, the state will be required to take corrective action to met WQS by 2006.

4.2 CONDITIONS REPORTED IN CURRENT STUDIES


MACROINVERTEBRATE INVENTORY

Five macroinvertebrate inventories have been performed in the Sand Creek Watershed during 1993, 1994, 1996, 2002, and 2003 according to GLEAS Procedure No. 51 (MDEQ 1997). GLEAS staff performed the 1993 and 1996 inventories and Annis Water Resources Institute (AWRI) performed the 1994 inventory as noted in the previous section. Dr. Neil MacDonald, professor at Grand Valley State University, led the 2002 and 2003 inventories with assistance from the Soil and Water Conservation Society of GVSU, AWRI staff, and watershed residents.

The analysis of benthic macroinvertebrates provides an excellent tool for assessing the impact of aquatic pollutants. Different benthic invertebrate species have varying tolerances to chemical perturbations. Thus, by examining abundance and presence/absence of species within the community over broad areas, impact can be assessed. GLEAS Procedure No. 51 specifies that macroinvertebrates be collected from all habitats within a stream during a specified amount of time. This provides an assessment of macroinvertebrate health that subsequently will provide an indication of general water quality of the stream location. If a stream contains a good number of taxa that are sensitive and a good number that are tolerant to aquatic pollutants, good to excellent water quality is presumed for that area. As stream health deteriorates, pollution-sensitive organisms, such as mayflies, caddisflies, and stoneflies, will become rare or absent while more tolerant species become more common and fair to poor water quality is presumed.

Pollution tolerant, intermediate, and sensitive class scores were calculated for each sample location in the Sand Creek Watershed based on the macroinvertebrates collected. For each location, data from each study year were averaged to assess general water quality for each location between 1993 and 2003 (Figure 16). In general, upstream sample locations, north of Leonard St., reveal fair water quality while downstream sites demonstrated good water quality. According to a biological assessment performed by GLEAS staff, the aquatic habitat of the upstream locations is more degraded due to agricultural land use practices and historical channelization. Downstream locations receive additional water inputs from the East Fork and other tributaries, which may elevate the quality of water.

Figure 16: Average Macroinvertebrate Scores in Sand Creek, 1993-2003

ROAD/STREAM CROSSINGS INVENTORY

Herman Miller volunteers, with support from staff of the MDEQ, performed a road/stream crossings inventory during fall 2002. At each of the 79 road/stream crossings inventoried, information regarding the following was collected:

- substrate composition,
- river morphology,
- physical appearance of stream,
- in-stream cover,
- stream corridor condition,
- adjacent land uses,
- road crossing information,
- potential sources of pollution, and
- background information including stream width, temperature, pH, and dissolved oxygen.

Photo documentation was compiled for each site, as was a summary of inventory results. The inventory summary results were categorized into 5 subwatersheds: lower, mid-lower, mid-upper, upper, and East Fork subwatersheds. The full report including site descriptions and locations can be found in Appendix B. A brief summary of noted pollutants and concerns is listed below.

Lower Subwatershed: The majority of this stream stretch flowed through Aman Park and the surrounding area was relatively natural. Pathogens, nutrients, oil, and additional storm water runoff inputs were noted as suspected pollutants/concerns. Trash and sediment loading were noted as well.

Mid-Lower Subwatershed: This stream section flowed through a wooded and rural residential area south of Marne. Gully erosion, nutrient loading, and lack of stream buffers were noted.

Mid-Upper Subwatershed: Tributaries in this subwatershed had very little water or were dry, yet high channel forming flows were evident. Land use was primarily agricultural in the northern portion and residential to urban in the southern half. Stream bank erosion, cattle access, gully erosion, nutrient runoff, lack of stream buffers, and impacts from urban runoff were noted.

Upper Subwatershed: Many of the channels in this subwatershed were county drains and were maintained. Land use was mainly agricultural. There was evidence of high flows during rain events and culverts were designed for extreme volumes of water. The following concerns were noted: stream bank erosion, animal access, sediment and nutrient loading, excessive algae, road runoff impacts, manure inputs, an eroded road ditch, trash, lack of agricultural BMPs, an undercut culvert, tiles draining directly to creek, culverts with significant sediment load, and a pipe contributing foamy water with a film.

East Fork Subwatershed: Land use ranged from agricultural in the northern region to rural residential and slightly urban in the mid-section and rural residential to forested in the lower reaches. The following concerns were noted: channel erosion, agricultural runoff impacts, a possible septic system contamination, gully erosion, road/residential runoff impacts, lack of stream buffers, deteriorated culverts, significant aquatic plant growth, nutrient loading, improper construction BMPs, and possible sewer main impacts.

PHYSICAL INVENTORY OF SAND CREEK

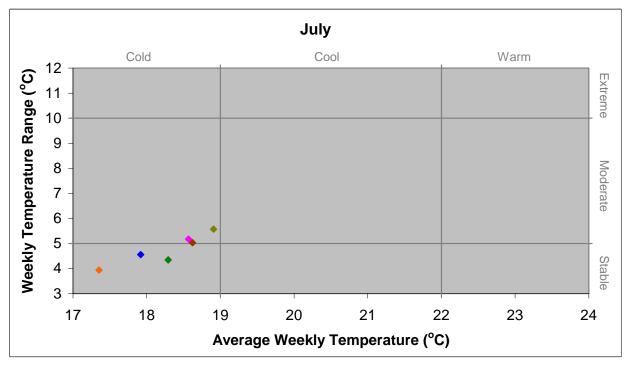
The project manager and a student assistant employed by the Annis Water Resources Institute performed a two-week physical inventory of Sand Creek in August 2003. Several follow up checks were also completed in June 2004. Digital orthoquadrangle aerial photographic maps, downloaded from the US Geological Survey website, were used to walk the creek. The main body of Sand Creek was walked from north of the Roosevelt Street stream crossing to north of the Luce Street crossing. A few stream stretches that flowed through heavily forested sections were not walked due to time constraints. The inventory was completed to assist the project manager in verifying suspected nonpoint source pollutants and identifying sites for implementation of Best Management Practices. Detailed field observations were taken at sites impacted by and contributing to nonpoint source pollution. The completed inventory can be found in Appendix C. The inventory includes a description, set of recommendations, and a location of each site. A brief summary of noted pollutants and concerns is listed below.

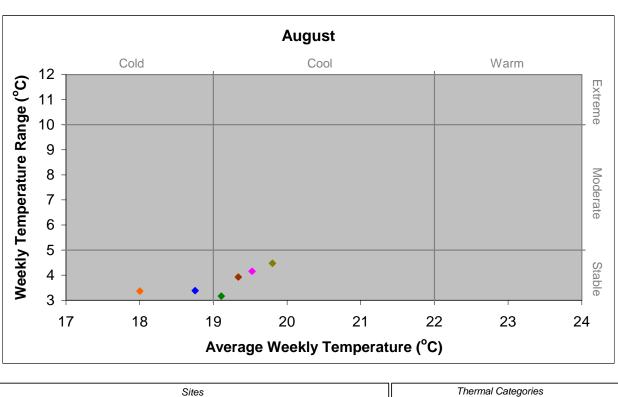
- Sediment loading and stream bank erosion due to ORV/tractor access, public access, storm water outlets, undercutting, runoff, unstable hydrology, and road crossings
- Sedimentation and gully erosion
- Nutrient runoff from residential/agricultural areas
- Possible thermal pollution due to lack of stream buffers and maintained lawns
- Unstable hydrology was indicated by scoured banks and indication of high flows
- Oil sheens on exposed streambeds
- Invasive plant species noted on stream bank
- Trash (e.g. metal parts, plastics, cans, tires)
- Manure runoff from nearby animal pastures

TEMPERATURE MONITORING

Kevin E. Wehrly et al. (2003) analyzed stream data from Michigan's Lower Peninsula and determined habitat suitability for various aquatic species within different thermal regimes. Using this information, Sand Creek was studied to show whether its thermal conditions at six specific locations were suitable habitat for Brown Trout and Mottled Sculpin, which are known to be successfully established and reproducing naturally in its waters.

During the study, water temperature data were collected every two hours from five sites along Sand Creek and one site along the East Fork during the months of July and August 2003. Using these data, the average weekly temperature and weekly temperature range was calculated for each site (Figure 17).


According to Wehrly et al. (2003), average temperatures and temperature ranges can be divided into a 3×3 matrix providing nine thermal categories. The thermal categories are defined for average temperature - cold (<19°C), cool (19°C to <22°C), and warm (\ge 22°C) - and temperature range - stable (<5°C), moderate (5°C to <10°C), and extreme (\ge 10°C). Using these thermal regimes, Wehrly et al. (2003) determined which thermal regimes were suitable habitat for various species. For brown trout, the cold-moderate thermal category is optimal, and the cold-stable and cool-moderate thermal categories are suitable. For mottled sculpin, the cold-moderate thermal category is optimal, and the cold-stable and cool-moderate thermal categories are suitable.


Using the temperature data plots from Sand Creek, thermal conditions can be analyzed for habitat suitability for these fish species. In July 2003, all six sites fell within the optimal or suitable thermal regimes for Brown Trout and Mottled Sculpin. In August 2003, four of the sample sites moved into the cool-stable thermal category, which is not suitable habitat for these coldwater

species according to Wehrly et al. (2003). However, it should be noted that these sample sites do not necessarily represent their particular stream section or are utilized as habitats by Brown Trout or Mottled Sculpin. Furthermore, since Brown Trout are mobile they will move to more suitable sites when temperatures become intolerable. Sculpin, however, are not as mobile. Sites populated by Mottled Scuplin that experience unsuitable temperature changes might cause distress of this species.

Based on these data, it is recommended that Sand Creek be monitored in the future to determine the locations of suitable and unsuitable thermal regimes. Sites deemed as suitable, but unpopulated by coldwater species, could be improved through habitat restoration, if appropriate. Furthermore, sites containing ideal habitat features but unpopulated with coldwater species, due to unsuitable thermal regimes, could be improved through Best Management Practices addressing the sources and causes of thermal pollution. Knowing the thermal conditions of Sand Creek and the habitat suitability within these thermal regimes for coldwater species will be a useful tool for assessing the state of the cold water fishery of the Sand Creek Watershed. Additionally, further monitoring would help determine if the water temperatures for the summer of 2003 are typical of the Sand Creek Watershed.

Figure 17: Sand Creek Average Weekly Water Temperature and Range

Cold: < 19°C

Warm: $\geq 22^{\circ}C$

Cool: 19°C to < 22°C

Stable: < 5°C

Extreme: $\geq 10^{\circ}$ C

Moderate: 5°C to < 10°C

Site D - Sand Creek at Leonard St.

Site E - Sand Creek at Aman Park

Site F - Sand Creek at Luce St.

Site A - Sand Creek at Arthur St.

Site B - Sand Creek at Berlin Fair Dr.
Site C - East Fork at 8th Ave.

MDEQ HYDROLOGIC STUDY

The Hydrologic Studies Unit (HSU) of the MDEQ has developed a hydrologic model of the Sand Creek Watershed (Appendix D). The hydrologic model was developed using the Hydrologic Engineering Center's Hydrologic Modeling System (HEC-HMS). Watershed monitoring data collected from April 11, 2002 to July 16, 2002 and data collected after April 21, 2003 will be used to refine the model. The preliminary report was completed in June 2003.

The model was developed to determine the effect of land use changes in the watershed on Sand Creek's flow regime and to provide design flows for stream bank stabilization management practices. It is suggested that the Sand Creek Watershed Partners, the local watershed group, and local communities use this information in the development of Best Management Practices and storm water ordinances.

The hydrologic model has four scenarios corresponding to 1800, 1978, 1998, and build-out land uses. The build-out scenario was developed according to area zoning maps. Zoning maps did not designate wetland areas and this scenario is further subdivided to model the effect of preserving or eliminating wetland storage in the watershed. The model predicts, based on land use trends, increases in runoff volumes and peak flows from 1800 to 1978/1998 and from 1978/1998 to build-out for the 50%, 10%, and 4% chance 24-hour storms. The model predicts nearly identical flows for the 1978 to 1998 land use scenarios.

Projected runoff volume and peak flow increases from the 10% and 4% chance 24-hour storms would serve to aggravate the existing flooding problems throughout the watershed. Only through proper storm water management practices can projected runoff volumes and peak flows be mitigated. The projected increases from the 50% chance (2 year), 24-hour storm will increase channel-forming flows. Stable streams with channel-forming flow usually have a 1-2 year recurrence interval. These relatively modest storm flows, due to their higher frequency, have more effect on channel form than extreme flood flows as indicated by excessive erosion at many locations throughout a steam stretch. The projected increase in volume and peak flow would therefore further increase stream bank erosion already taking place in Sand Creek. Storm water management practices can help reduce projected channel-forming flow increases, however, it is suggested that channel-forming flow criteria be specifically considered so that selected practices be most effective.

The proposed Kent County model storm water ordinance calls for a maximum release rate of 0.05 cubic feet per second per acre (cfs/acre) for runoff from the 50% chance, 24 hour storm for Zone A areas, the most environmentally sensitive of the three zones. Currently, the Sand Creek Watershed has an area-weighted average yield of 0.02 cfs/acre for this type of storm. After considering the model predictions, the Sand Creek Watershed Partners recommended a maximum release rate of 0.02 cfs/acre for runoff from the 50% chance, 24 hour storm for Zone A areas in the watershed. Currently eight subbasins have a higher yield: Sand Creek to State, Sand Creek to Wilson, Sand Creek Tributary to Leonard, East Fork lower, East Fork to Hayes, East Fork Tributary, East Fork Upper (Figure 2).

The model ordinance also calls for a maximum release rate of 0.13 cfs/acre for the runoff from the 4 % chance, 24-hour storm for Zones A and B. Currently, the average yield from this storm for the Sand Creek Watershed is 0.09 cfs/acre. Nine subbasin have higher yields: Sand Creek Lower, Sand Creek to East Fork, Sand Creek to State, Sand Creek to Wilson, Sand Creek South Tributary, Sand Creek Tributary to Leonard, East Fork to Hayes, East Fork Tributary. The Sand

Creek Watershed Partners have not yet recommended a maximum release rate for runoff from the 4% chance, 24 hour storm for Zones A and B in the watershed.

MICHIGAN NATURAL FEATURES INVENTORY

The Michigan Natural Features Inventory (MNFI) has compiled a database of Michigan's native plants, animals, aquatic animals, and natural ecosystems. Information has been gathered from field surveys, museum and herbaria records, published works, and communication with scientist in the Great Lakes Basin. The information is used to set conservation priorities, guide land use and management activities, and assign "rarity ranks", among other things.

The information below (Tables 4 and 5) is a listing of all known occurrences of threatened, endangered, and special concern species and high quality natural communities occurring within the Sand Creek Watershed. This list is based on known and verified sightings of threatened, endangered, and special concern species and represents the most complete data set available as of May 7, 2004. This list is not considered to be a comprehensive listing of every potential species found the watershed. Additional threatened, endangered, and special concern species may be present in watershed and not appear on this list.

TABLE 4: THREATENED, ENDANGERED, AND SPECIAL CONCERN SPECIES IN THE SAND CREEK WATERSHED

Scientific Name	Common Name	State Status	
1. Acris crepitans blanchardi	Blanchard's Cricket Frog	Special Concern	
2. Hybanthus concolor	Green Violet	Special Concern	
3. Ictiobus niger	Black Buffalo	Special Concern	
4. Pomatiopsis cincinnatiensis	Brown Walker	Special Concern	
5. Terrapene carolina carolina	Eastern Box Turtle	Special Concern	
6. Euphorbia commutata	Tinted Spurge	Threatened	
7. Mertensia virginica	Virginia Bluebells	Threatened	
8. Poa paludigena	Bog Bluegrass	Threatened	
9. Trillium nivale	Snow Trillium	Threatened	
10. Epioblasma triquetra	Snuffbox	Endangered	

TABLE 5: HIGH QUALITY NATURAL COMMUNITIES IN THE SAND CREEK WATERSHED

Natural Communities	
1. Bog	
2. Dry-mesic southern forest	
3. Emergent marsh	

CHAPTER 5 DESIGNATED AND DESIRED USES

5.1 DESIGNATED USES IN THE SAND CREEK WATERSHED

Designated uses are defined as recognized uses of water established by state and federal water quality programs. The State of Michigan states that all surface waters shall be designated and protected for eight specific uses according to R323.1100 of Part 4, Part 31 of PA 451, 1994, revised 4/2/99 (Table 6).

TABLE 6: DESIGNATED USES FOR SURFACE WATERS IN THE STATE OF MICHIGAN

Designated Use	General Definition
Agriculture	Livestock watering, irrigation, and crop spraying
Navigation	Navigation of inland waters
Industrial water supply	Water utilized in industrial or commercial applications
Public water supply at the point of water intake	Surface waters meet human cancer and noncancer values set for drinking water
Warm water or cold water fishery	Supports warm water or cold water species
Other indigenous aquatic life and wildlife	Supports other indigenous animals, plants, and macroinvertebrates
Partial body contact recreation	Supports boating, wading, fishing activities
Total body contact recreation	Supports swimming activities between May 1 to October 31

It was determined by the project manager and the Sand Creek Watershed Partners that three of the eight designated uses established by the state were not current uses of the Sand Creek Watershed:
1) industrial water supply, 2) navigation, and 3) public water supply. The remaining five designated uses were determined to be designated uses of the Sand Creek Watershed (Table 7). Since Sand Creek is designated as a cold water stream (MDNR 2000), the cold water fishery use, rather then the warm water fishery use, is listed.

TABLE 7: DESIGNATED USES OF THE SAND CREEK WATERSHED

Designated Use	General Definition
Agriculture	Livestock watering, irrigation, and crop spraying
Cold water fishery	Supports warm water or cold water species
Other indigenous aquatic life and wildlife	Supports other indigenous animals, plants, and macroinvertebrates
Partial body contact recreation	Supports boating, wading, fishing activities
Total body contact recreation	Supports swimming activities between May 1 to October 31

5.2 PRIORITIZATION OF DESIGNATED USES

After review of the impairments to the Sand Creek Watershed, the Sand Creek Watershed Partners decided on the priority ranking of designated uses shown in Table 8. The cold water fishery use was deemed the highest priority while the other indigenous aquatic life and wildlife use was ranked as the second priority. The cold water fishery use was selected as a higher priority since fishing is a popular use of the waterway. Both of these uses were ranked at a higher priority level than the recreational uses because the improvement of these uses would address seven rather than four watershed pollutants. The partial body contact recreational use was ranked as the third priority above the total body contact recreational use because the watershed is used more frequently used for partial body recreation, such as wading and fishing, than total body contact recreation, such as swimming. Use of the watershed for agricultural purposes was ranked as the fifth priority.

TABLE 8: PRIORITY OF DESIGNATED USES IN THE SAND CREEK WATERSHED

Designated Use	Priority
Cold Water Fishery	1
Other Indigenous Aquatic Life and Wildlife	2
Partial Body Contact Recreation	3
Total Body Contact Recreation	4
Agriculture	5

5.3 IMPAIRED DESIGNATED USES

Watershed pollutants have impaired or threatened four of the five designated uses of the Sand Creek Watershed (Table 9). The cold water fishery use is impaired while the following three designated uses are threatened: 1) other indigenous aquatic life and wildlife, 2) partial body contact recreation, and 3) total body contact recreation. The agricultural use is currently being met in the Sand Creek Watershed.

Designated uses that are impacted by pollutant(s) that exceed Water Quality Standards (WQS) are said to be impaired. Designated uses that are threatened by pollutant(s) that currently meet WQS but may not in the future are said to be threatened. WQS are state rules established to protect public health and welfare, to enhance and maintain the quality of water, and to protect the state's natural resources of the Great Lakes, the connecting waters, and all other surface waters of the state (R323.1041 of Part 4, Part 31 of PA 451, 1994, revised 4/2/99).

TABLE 9: MET, IMPAIRED OR THREATENED DESIGNATED USES OF THE SAND CREEK WATERSHED

Designated Use	Designated Use Met, Impaired, or Threatened
Agriculture	Met
Cold Water fishery	Impaired
Other indigenous aquatic life and wildlife	Threatened
Partial body contact recreation	Threatened
Total body contact recreation	Threatened

The cold water fishery use was determined as impaired because MDEQ determined Sand Creek was not meeting WQS set for its cold water fishery. After performing a biological community assessment of the fish community, the MDEQ rated the fish community of Sand Creek as poor from Wilson Road downstream to its confluence with the Grand River. Sand Creek was placed on the nonattainment list published as part of the 2002 303(d) Report (MI/DEQ/SWQ-02/013). To note, the specific pollutants impairing the cold water fishery and exceeding WQS have not been determined. After approval from the U.S. Environmental Protection Agency, the state will be required to take corrective action to meet WQS by 2006.

The two recreational uses and other indigenous aquatic life and wildlife use were determined to be threatened by watershed pollutants based upon DEQ water quality reports, field observations by the project manager, scientific experts, and members of the Sand Creek Watershed Partners.

5.4 IMPAIRMENTS TO DESIGNATED USES

A number of watershed pollutants were identified as impairing or threatening the designated uses of the Sand Creek Watershed. Past watershed studies, current inventories, and personal communication with watershed stakeholders, and scientific experts provided the necessary information to identify pollutants. These watershed pollutants, including their sources and causes, are listed in Table 10. These pollutants either adversely or have the potential to adversely affect the designated uses of the Sand Creek Watershed.

Pollutants were prioritized by the Sand Creek Watershed Partners (Partners) and the project manager (Table 10). The impact of each pollutant on each designated uses was considered. Past and current studies, input from watershed stakeholders, observations by staff and volunteers were considered in order to determine each pollutant's degree of degradation to surface waters. For example, sediment was determined to have the greatest impact to the Sand Creek Watershed after considering the following: MDEQ GLEAS Surveys, water chemistry monitoring data collected by AWRI staff, observations by AWRI staff on visits to the watershed, and input from the Partners. Sediment was thus determined to be the highest priority with regard to the attainment of the designated uses of cold water fishery and other indigenous aquatic life and wildlife. Sources of pollutants were prioritized in a similar manner. Sources were ranked according to the degree in which they were believed to contribute pollutants to the water bodies of the Sand Creek Watershed (Table 10). Past and current studies, input from watershed stakeholders, and observations by AWRI staff and volunteers were used to prioritize sources.

The certainty of a recorded pollutant in the watershed is also noted in Table 10. Pollutants, sources, and causes are listed as being either known (k), suspected (s), or potential (p). For example, hydrocarbons are listed as a known pollutant because the appearance of several oil sheens was observed during the physical inventory of Sand Creek in August 2003. The presence of the oil sheens confirms hydrocarbons as a known pollutant. Additionally, if algal blooms were observed in the watershed then they would be a known source of nutrient pollution, however, if leaking septic systems were suspected as a source, but weren't observed, this source would remain suspected. Footnotes within Table 10 indicate what information source was used to confirm whether a pollutant, sources, or causes was "known (k)". It should be noted that Table 10 does not encompass all pollutants, sources, or causes and this list should be updated as more information is made available.

TABLE 10: SOURCES AND CAUSES OF POLLUTANTS AFFECTING DESIGNATED USES OF THE SAND CREEK WATERSHED

Designated Use	Pollutants/ Impairments: known (k), suspected (s), potential (p)	Sources: known (k), suspected (s), potential (p)	Causes: known (k), suspected (s), potential (p)	
		1. Agricultural Runoff (k) ^{1,2}	Lack of Conservation and Environmental Farming Practices (k) ^{1,2}	
		5. Construction Sites (k) 1, 2	Improper Erosion and Sediment Control Measures (k) 1,2	
		6. Unpaved Vehicle Access Roads (k) ²	Use of Sandy Gravel Vehicle Access Roads (k) ²	
			Poorly Maintained Public Access Areas (k) 1	
			Misuse of Motorized Vehicles (ORV/Tractor) (k) 1	
	1. Sediment (k) 1,2,3,8	a a . 12	Unrestricted Livestock Access (k) 1,2	
		2. Stream Banks (k) ^{1,2}	Harmful Changes in Hydrology (k) 1,2,4	
			Discharge from Storm Water Outlets and Drainage Networks (k) 1,2	
			Log Jams (k) ^{1,2}	
		3. Road/ Stream Crossings (k) 1,2,4	Inadequate Erosion and Sediment Control Measures (k) 1,2	
		4. Urban Runoff (k) ^{1,2}	Untreated Urban Runoff (k) 1,2	
			Undesirable Site Selection for Animal Pastures (k) ¹	
		2. Animal Waste (k) ^{1, 2}	Unrestricted Livestock Access (k) 1,2	
			Improper Manure Management/Application (s)	
llife			Improper Disposal of Pet Waste (s)	
Mild		3. Agricultural Runoff (k) ^{1,2}	Lack of Conservation and Environmental Farming Practices (k) ^{1,2}	
pue	2. Nutrients (k) ^{1,2,8}	1. Fertilizer Runoff (s)	Improper Fertilizer Management (s)	
hery Life a		4. Failing Septic Systems (s)	Improper Installation, Operation, or Maintenance (s)	
r Fis atic]		7. Wastewater Treatment Sites (s)	Improper Installation, Operation, or Maintenance (s)	
Cold Water Fishery Other Indigenous Aquatic Life and Wildlife		6. Yard and Kitchen Waste Dumping (k) 1	Improper Waste Disposal (k) 1	
snou		5. Urban Runoff (s)	Untreated Urban Runoff (s)	
C		2. Lack of Streamside Canopy (k) 1, 2	Removal of Canopy on Waterways and Drainage Networks (k) ^{1, 2}	
r H	3. Thermal Pollution	1. Storm Water Runoff (k) 1,2	Impervious Surfaces (s)	
Othe	(k) ⁸	4. Agricultural Water Withdrawals (s)	Irrigation Practices (s)	
		3. Sedimentation (s)	See Causes of Sediment Pollution	
		3. Channelization (k) ³	Agricultural Land Use Practices (k) 1,2	
		1. Discharge from Storm Water Outlets and Drainage Networks (k) ^{1,2}	Agriculture and Urban Land Use Practices (k) 1.2	
	4. Harmful Changes	7. Agricultural Water Withdrawals (s)	Irrigation Practices (s)	
	in Hydrology (k)	5. Impervious Surfaces (s)	Land Use Change (urbanization) (k) ⁶	
	1,3,4,7	6. Failed Dam (k) ⁷	Failure of Root Dam (k) 1	
		4. Disconnection/Filling of Floodplain (k) ⁷	Undesirable Agricultural and Urban Land Use Practices (k) 1	
		2. Loss of Wetlands (k) ⁵	Drainage/Deposition of Fill Material to Accommodate Agriculture and Development (k) 1	
		1. Urban Runoff (k) ¹	Untreated Runoff from Gas Stations/Parking Lots/Roads (k) 1,2	
			Improper Waste Disposal/Spills (s)	
	5. Hydrocarbons (k)	2. Industrial/Fuel Storage Sites (s)	Improper Equipment Installation, Operation, or Maintenance (s)	
		3. Unauthorized Junk Yards (k)	Improper Disposal of Inoperable/Dismantled Vehicles (k) 9	
		4. Illicit Dumping into Storm Drains (s)	Lack of Knowledge about Storm Drains (s)	

TABLE 10: SOURCES AND CAUSES OF POLLUTANTS AFFECTING DESIGNATED USES OF THE SAND CREEK WATERSHED

<u>.</u>			Improper Waste Disposal/Spills (s)	
Cold Water Fishery Other Indigenous Aquatic Life and Wildlife	6. Toxic Substances (s)	2. Industrial Sites (s)	Improper Equipment Installation, Operation, or Maintenance (s)	
Fishe Aqu Ilife	(Metals,	4. Landfill Leachate (s)	Faulty Landfill Design (k) ⁴	
Cold Water Fishery Indigenous Aquatic and Wildlife	Brine/Chloride, VOCs, SOCs, etc.)	3. Road Salt Runoff (s)	Excessive Application (s)	
old Wandige		1. Agricultural Runoff (s)	Improper Pesticide/Herbicide Management (s)	
C ₀	7. Invasive/Exotic	Maintained Lawns and Natural Areas (k)	Purposeful/Accidental Human Introductions (k) 1	
0	Plant Species (k) ¹	1. Maintaineu Lawiis and Naturai Areas (k)	Wind and Animal Dispersion (s)	
			Undesirable Site Selection for Animal Pastures (k) ¹	
			Unrestricted Livestock Access (k) 1,2	
		1. Animal Waste (k) ^{1, 2}	Improper Manure Management/Application (s)	
	1. Pathogens (k) ⁸		Improper Disposal of Pet Waste (s)	
		2. Failing Septic Systems (s)	Improper Installation, Operation, or Maintenance (s)	
c ä		3. Wastewater Treatment Sites (s)	Improper Installation, Operation, or Maintenance (s)	
Total Body Contact Recreation Partial Body Contact Recreation		1. Urban Runoff (k) ¹	Untreated Runoff from Gas Stations/Parking Lots/Roads (k) 1,2	
t Reci			Improper Waste Disposal/Spills (s)	
Conta	2. Hydrocarbons (k)	2. Industrial/Fuel Storage Sites (s)	Improper Equipment Installation, Operation, or Maintenance (s)	
dy C		3. Unauthorized Junk Yards (k)	Improper Disposal of Inoperable/Dismantled Vehicles (k) 9	
al Bo tial B		4. Illicit Dumping into Storm Drains (s)	Lack of Knowledge about Storm Drains (s)	
Tot Part			Improper Waste Disposal/Spills (s)	
	3. Toxic Substances (s)	2. Industrial Sites (s)	Improper Equipment Installation, Operation, or Maintenance (s)	
	(Metals, Brine/Chloride,	4. Landfill Leachate (s)	Faulty Landfill Design (k) ⁴	
		3. Road Salt Runoff (s)	Excessive Application (s)	
		1. Agricultural Runoff (s)	Improper Pesticide/Herbicide Management (s)	
		2. Commercial, Residential, and Public Areas (k) 1, 2		
	4. Trash (k) ^{1,2}	1. Roads and Parking Lots (k) 1	Improper Waste Disposal (k) ^{1, 2}	
		3. Illicit Dumpings (k) ¹		

Information Sources:

- 1. Observations noted by staff of the Annis Water Resources Institute. August 2003.
- 2. Stream Survey of Sand Creek. 2002. Performed by Herman Miller Volunteers with support from the Michigan Department of Environmental Quality.
- 3. Biological Assessment of Sand Creek. GLEAS Survey. May 2000.
- 4. An assessment of Water Quality and Aquatic Habitat and Recommendations for the Protection and Enhancement of the Sand Creek Watershed Ottawa County and Kent County, Michigan. Annis Water Resources Institute of GVSU. January 1996.
- 5. Wetland Map. AWRI. 2003.
- 6. Land Use Map. AWRI. 2003.
- 7. Personal communication with Dave Fongers of the Michigan Department of Environmental Quality. October 2003.
- 8. Preliminary Watershed Assessment: Sand Creek Watershed. Annis Water Resources Institute. 2003.
- 9. Personal communication with the Sand Creek Watershed Partners. 2003.

The pollutants and impairments, noted in Table 10, which affect the designated uses of the Sand Creek Watershed, are described below.

SEDIMENT

Inorganic fine sediments are naturally present to some extent in all streams, but are considered pollutants at excessive levels. Precipitation, including secondary events such as floods and melting snow packs, will transport sediment from eroded uplands to nearby water bodies. In addition, channel movement will scour stream banks and streambeds and add additional amounts of inorganic sediment. Because storm events increase stream velocity, more sediment is added by channel movement during rainfall events. Sediment can be suspended, causing turbidity, or deposited on the streambed, causing a loss of benthic productivity and fish habitat. The deposit of an excessive amount of sediment in a stream will cover spawning habitat, clog fish gills, and generally degrade the aquatic habitat of fish and macroinvertebrate species. Human activities, related to agriculture, forestry, mining, and urban development, contribute excessive amounts of sediment that often overwhelms the "assimilative capacity" of a stream (Cairns 1977) and affects aquatic life.

The biological assessment performed by GLEAS staff of the MDEQ on August 26, 1993 and September 16, 1996 noted high levels of embeddedness and bottom deposition in the upper watershed resulting from improper agricultural uses and historical channelization. Storm water runoff is suspected of carrying excessive amounts of sediment to Sand Creek and its tributaries from agricultural/urban areas, construction sites, vehicle access roads, stream banks, and road/stream crossings. Access by humans, livestock, and motorized vehicles has caused unstable and eroded stream banks. Discharge from storm water, drain tile, and ditch outlets has also eroded stream banks within the Sand Creek Watershed. Agricultural and urban runoff, especially at road stream crossings, also adds excessive amounts of sediment to Sand Creek and its tributaries.

NUTRIENTS

Nutrients are compounds that stimulate plant growth, but at elevated levels are considered pollutants and an environmental concern. In fact, nutrients were rated as the second most important factor, next to siltation, adversely affecting the nation's fishery habitat in streams (Judy et al. 1984). Excessive nutrients, carried by storm water runoff, can cause dense algal growths known as an algal bloom. After the elevated nutrient source has been depleted, the algal bloom will die and decompose, reducing dissolved oxygen (DO) levels. If DO levels reach levels intolerant to fish species, a fish kill may result. If DO levels are consistently low, a shift toward more tolerant aquatic species will arise, reducing species diversity within the stream. Nitrogen and phosphorus have been identified as the two most common nutrients to enter surface waters. Polluted runoff can result from a variety of sources related to agricultural and urban land use practices.

Known and suspected sources of nutrient inputs to Sand Creek and its tributaries include the following: animal waste, failing septic systems, wastewater treatment sites, yard and kitchen waste dumpings, and fertilizer runoff. It should be noted that Prein & Newoff has been hired to perform a hydrogeology study to assess environmental impacts from the leakage that was observed from the Wright Township Wastewater Storage Lagoon. Currently a lagoon closure plan is in place and the NPDES permit expired April 1, 2004. The report on leakage impact on groundwater was submitted January 1, 2004.

A preliminary watershed assessment performed by the Annis Water Resources Institute between the months of May and November 2003 confirm that elevated levels of the following nutrients occurred periodically during the sampling period: soluble reactive phosphorus (SRP-P), total phosphorus (TP-P), ammonia (NH₃-N), total Kjeldahl nitrogen (TKN-N), and nitrate (NO₃-N). Sample locations are noted in Figure 18 and a complete nutrient data set is located in Appendix E. These compounds provide sources of nitrogen and phosphorus, which at elevated levels, have the potential to stimulate the growth of algal blooms, which may lead to fish kills within Sand Creek or its tributaries. Algal blooms were noted in Sand Creek during the road/stream inventory performed in the fall of 2002 and the physical inventory performed in the summer of 2003.

THERMAL POLLUTION

Thermal pollution can result from the input of heated liquids from industrial discharges or hot impervious surfaces, such as parking lots, roads, or rooftops. A significant lack of streamside vegetation and ditching practices will also lead to thermal pollution due to direct exposure of surface waters to the sun. A significant reduction in water levels from water withdrawals will also cause a creek to be more easily heated by the sun. Dark sediment particles absorb heat increasing the temperature of surface water as well. Thermal pollution is harmful to cold water species such as Rainbow and Brown Trout because it may lower the dissolved oxygen level beyond the species' tolerance level. This occurs because warm water holds less dissolved oxygen than cold water.

A lack of streamside canopy, storm water runoff, ditching/tiling, sedimentation, and agricultural water withdrawals are known and suspected sources of thermal pollution to Sand Creek and its tributaries. As noted in Chapter 4, thermometers placed in Sand Creek by AWRI staff during August 2003 revealed that four of six sample locations exhibited cool temperatures with stable variation, which is unsuitable for Brown Trout according to Wehrly et al. (2003). However, these locations do not necessarily represent their stream stretch or are utilized by Brown Trout. Further monitoring is recommended to determine if a significant affect on the cold water fishery exists. Meanwhile thermal pollution is considered a threat to the cold water fishery and other aquatic life and wildlife.

HYDROLOGY

Harmful changes in a stream's flow regime, such as increased peak flows and decreased attenuation, can increase sediment pollution, cause flooding, and damage aquatic habitat. Hydrology can be defined as the science of water, its properties, phenomena, and distribution over the earth's surface. The hydrologic cycle describes the movement of water cycling between the atmosphere and earth through the processes of condensation, precipitation, infiltration, runoff, and evaporation. Precipitation will infiltrate into the soil as groundwater or runoff the land into a nearby water body or waterway as surface water. Impervious surfaces, such as parking lots, roads, and rooftops, associated with urban development, and loss of wetlands disrupt this natural cycle. Storm water runoff that would normally infiltrate into the soil will run off impervious surfaces and erode stream banks due to its greater force and may cause flooding due to its greater volume. Loss of wetlands further intensifies this situation due to the fact that loss of storage capacity will contribute to greater surface runoff volume.

In the Sand Creek Watershed, increases in impervious surfaces, historical channelization, and the failure of Root Dam has led to increases in storm water runoff. This increase in storm water runoff, along with inputs from storm water, tile and ditch outlets, has yielded a greater volume and force of storm water into the creek and its tributaries. Destructive manipulation of the floodplain and loss of wetlands have decreased runoff storage during high flow events also

contributing to a greater runoff volume. These land use practices have resulted in excessive stream bank erosion, several flooding events, and a greater addition of runoff pollutants to the creek and its tributaries. Excessive water withdrawals during base flow conditions also have the potential to create harmful changes in the creek's flow regime. During the biological assessment of Sand Creek, GLEAS staff indicated that hydrologic fluctuations negatively affected the fish and macroinvertebrate habitats of the Sand Creek Watershed.

The hydrologic model of the watershed, developed by the Hydrologic Studies Unit (HSU) of the MDEQ, projected increases in storm water runoff volume and peak flows from the 1998 land use scenario to build-out conditions. The build-out scenario was based on existing zoning maps. Model predictions based on this land use change show significant increases in runoff volumes and peak flows for all three design storms: 50% chance, 10% chance, and the 4% chance, 24-hour storms. Peak flows and runoff volumes from the 50% chance, 24-hour storm are predicted to increase more, on a percentage basis, than flows from the 10% or 4% chance, 24-hour storm. The projected increases in runoff volumes and peak flows from the 50% chance storm would increase channel forming flow, which will increase stream bank erosion that is already reported as excessive within the watershed. In addition, projected increases in runoff volumes and peak flows from the 10% and 4% chance storms will aggravate existing flooding problems reported throughout the watershed.

HYDROCARBONS

Hydrocarbons are defined as an organic compound (as acetylene or butane) containing only carbon and hydrogen and often occurring in petroleum, natural gas, coal, and bitumens. Oil sheens were noted on the stream banks of Sand Creek during the physical inventory performed in August 2003. The presence of hydrocarbons is often the result of road runoff containing automotive petroleum products. It may also result from illicit dumping of used motor oil into storm drains. Industrial and fuel storage sites are also suspected of contributing hydrocarbons to surface and groundwater reserves of the Sand Creek Watershed. Two sites containing Leaking Underground Storage Tanks (LUSTs) have been reported by the MDEQ as open LUST sites (MDEQ 2003). An identified open LUST site indicates that a release has occurred from one or more underground storage tanks and corrective actions have not been completed. The two open LUST sites identified in the Sand Creek Watershed are both located in Marne and combined account for 13 individual leaking storage tanks, 10 of which have been removed and 3 that are currently in use (Table 11). The 3 leaking tanks currently in use are located in Marne have a 15,000 gallon capacity each and are inevitably contaminating ground water reserves in close proximity to Sand Creek. The MDEQ has also identified a Tool and Die site impacted with cutting oil located in Walker (Table 12).

TABLE 11: OPEN LEAKING UNDERGROUND STORAGE TANK SITES IN THE SAND CREEK WATERSHED

Facility Name	Facility Address	No. of leaking tanks in use	No. of removed tanks	Tank Capacity (gal.)	Substance Stored	Release Date
Marne Imperial #52*	14226 Ironwood Dr. Grand Rapids, MI 49504 Phone#: (517) 773-9921	3	5	6000- 15000	Gasoline	9-15-1999
Schneiders Shell	1460 Franklin St. Marne, MI 49435 Phone#: (616) 677-1537	0	5	1000-4000	Gasoline and Diesel	12-16-1999

^{*}Currently the Marathon Gas Station located on 8th Avenue and Ironwood Drive

TOXIC SUBSTANCES

Toxic Substances can affect the reproductive health of aquatic life and may pose a health risk to recreational users who use a water body for partial/total body contact recreational uses or consume its fish. The Michigan Department of Environmental Quality defines toxic substances as "a substance, except for heat, that is present in sufficient a concentration or quantity that is or may be harmful to plant life, animal life, or designated uses" (R 323.1044 1100 of Part 4, Part 31 of PA 451, 1994, revised 4/2/99). Toxic substances can include but are not limited to: inorganic contaminants, such as nitrate and lead; synthetic organic contaminants, such as pesticides and herbicides; volatile organic contaminants, such as xylenes, toluene, and benzene. These contaminants, mentioned above, are designated as drinking water contaminates by the Environmental Protection Agency (EPA 2002).

Several toxic substances have been released into the Sand Creek Watershed as indicated by the Part 201 list (Table 12) produced by the MDEQ (MDEQ 2004). Unknown amounts of lead, an inorganic contaminant, and the following volatile organic contaminants were released in Marne or Walker between 1990 and 1997: Toluene, Benzene, Xylenes, Ethylbenzene, Trichloroethylene, Perchloroethylene, 1,1,1 Trichloroethane, Methyl ethyl ketone, and Methylene chloride. These contaminants are suspected of impacting groundwater after time of release. It is unknown but suspected that these formerly impacted groundwater plumes are impacting Sand Creek and its tributaries currently. To note, the unlined suburban sanitary landfill is abandoned and no effort has been initiated since 1990 to address contaminants. The landfill accepted primarily municipal waste but was suspected of accepting waste from plating, leather tanning, and industry (AWRI 1996). Agricultural runoff is suspected of adding pesticides and herbicides to surface waters via storm water runoff due to improper pesticide/herbicide management.

TABLE 12: PART 201 SITES OF ENVIRONMENTAL CONTAMINATION IN THE SAND CREEK WATERSHED

Site Name	Site Address	Pollutant (s)	Score	Score Date	Status
1379 Comstock**	1379 Comstock Marne, MI 49435	Pb; T; B; X; E*	36 out of 48	01-06-1997	Interim response in progress
H.B. Fuller Company	2727 Kinney Ave. NW Walker, MI 49544	1,1,1 TCA;* MEK;* Methylene chloride	40 out of 48	11-28-1995	Interim response in progress
Ranger Tool and Die Co.	2024 Kinney NW Walker, MI 49544-1103	Cutting oil	19 out of 48	05-01-1991	Interim response in progress
Suburban Sanitary Landfill	15342 24th Ave. Marne, MI 49435	Pb*	25 out of 48	11-14-1990	Inactive - no actions taken to address contamination
Walker Area Ground Water Contamination	Walker, Richmond, Kinney Walker, MI (T.7NR.12W-S.07)	TCE; PCE*	27 out of 48	09-03-1991	Interim response conducted – No further activities anticipated

INVASIVE/EXOTIC SPECIES

Introduced species are referred to by a variety of names: invasive, nonnative, alien, exotic, or nonindigenous. Introduced species are those that evolved elsewhere and have been purposely or

^{**} Currently Wolohan Lumber

accidentally relocated. While some species have invaded habitats on their own (e.g., migrating wildlife, plants, and animals rafting on floating debris), humans have dramatically increased the diversity and scale of invasions by exotic species. Introduced species often find no natural enemies in their new habitat and therefore spread easily and quickly. Invasive plants can smother native vegetation as well as introduce diseases and parasites that can attack and eliminate dominant native plant species. According to The Nature Conservancy (TNC), invasive species have contributed to the decline of 46% of endangered species in the U.S. (TNC 2003).

Common Periwinkle (*Vinca minor L.*) was identified by the project manager on a section of stream bank during the physical inventory of Sand Creek in August 2003. Common Periwinkle is a perennial evergreen ground cover with thick glossy leaves and small blue flowers that occur indeterminately from April to September. The Nature Conservancy has identified Common Periwinkle as an invasive species (TNC 2004) and the Plant Conservation Alliance (PCA) reports Common Periwinkle invasions in twenty-five states including Michigan (PCA 2003). From the backyard of a residence located on Leonard Street, this invasive plant species has spread and is currently covering a 100' x 30' area of stream bank along Sand Creek. If left to grow, this

invasive will continue to spread and choke out the canopy species and expose the creek to direct sunlight possibly elevating water temperatures.

Garlic Mustard has been located in Aman Park by the Grand Rapids Audubon Club and is identified as an invasive by The Nature Conservancy (TNC 2004). Garlic Mustard (*Alliaria peteiolata*) is a biennial herb in the mustard family with triangular to heart-shaped, coarsely toothed leaves that gives an odor of garlic when crushed. Although Garlic Mustard does not appear to be impacting water quality in the Sand Creek Watershed, it does pose a severe threat to native plants and animals. It typically invades forested communities and edge habitats where it rapidly spreads and displaces native herbaceous species. Displacement occurs rapidly, often within 10 years of establishment. Many native wildflowers that complete their life cycles in the springtime (e.g., spring beauty, wild ginger, bloodroot, Dutchman's breeches, hepatica, toothworts, and trilliums) occur in the same habitat as garlic mustard. Garlic mustard is simply more aggressive and takes over these wildflower communities. Once established, garlic mustard is very difficult to control. Annual monitoring and rapid removal of plants will be the most effective measure in preventing the establishment of garlic mustard and protecting the wildflower species of Aman Park.

The Nature Conservancy identifies the following invasive plants for Michigan, any of which may be present in the Sand Creek Watershed and impacting designated uses: Purple Loosestrife, Kudzu, Multiflora Rose, Giant Salvinia, Tree of Heaven, Bush Honeysuckle, Morrow's Honeysuckle, Tatarian Honeysuckle, European Buckthorn, Glossy Buckthorn, Eurasion Watermilfoil, Sericea, and Russian Olive (TNC 2004).

TRASH

Trash decreases aesthetics and creates a less desirable, and potentially harmful, environment for recreational uses such as fishing, wading, swimming, etc. Trash is carried by storm water runoff from impervious surfaces, such as parking lots and roads, to surface waters. Illegal dumping also contributes to further stream pollution.

Illicit dumping of trash, such as furniture, appliances, scrap metal, and tires, was noted during the physical inventory of Sand Creek in August 2003. Tires were the most prevalent form of trash noted. In addition, evidence of trash inputs via urban runoff, such as pop cans and plastics, was also evident.

PATHOGENS

The presence of coliforms, *Escherichia coli* (*E. coli*) or fecal coliform, within a water body indicates the possible presence of microbial pathogen contamination. Coliforms are mostly harmless bacteria that live in soil, water, and the intestinal tracts of humans and warm-blooded animals. Pathogens are microbes that cause disease and include several types of bacteria, viruses, protozoa, and other organisms. The extent to which total coliforms are present in surface waters can indicate general water quality and the likelihood that the water is contaminated with microbial pathogens. Improperly installed, operated, or maintained septic systems and waste water treatment sites can contribute pathogens from humans to surface waters, posing a potential health risk to recreational users. Runoff from animal pastures and improper disposal of pet waste also contribute animal pathogens to nearby water bodies.

The water quality assessment of Sand Creek performed by the AWRI between May and November 2003 reveals elevated *E.coli* levels. The Michigan Department of Environmental Quality (MDEQ) has set specific rules to protect partial and total body recreation activities according to R 323.1062 of Part 4, Part 31 of PA 451, 1994, revised 4/2/99. According to this rule, compliance is based on the following sample methods:

- Total Body Contact Recreation Sampling Methods:
 - 1) Each sampling event shall consist of 3 or more samples taken at representative locations within a defined sampling area. The geometric mean of all individual samples taken during 5 or more sampling events representatively spread over a 30 day period is not to contain more than 130 *E.coli* per 100 milliliters.
 - 2) The geometric mean of 3 or more samples taken during the same sampling event at representative locations within a defined sampling area is not to contain more than a maximum of 300 *E.coli* per 100 milliliters.
- Partial Body Contact Recreation Sampling Method:

The geometric mean of 3 or more samples, taken during the same sampling event, at representative locations within a defined sampling area is not to exceed a maximum of 1000 E.coli per 100 milliliters.

Due to financial constraints, only one individual sample was collected from each sample location (Figure 18) one to three times per month during AWRI's preliminary watershed assessment of the Sand Creek Watershed. Although this data cannot be used to determine whether total or partial body contact recreational uses are being met, it does provide a general snapshot of bacterial concentrations in Sand Creek (Table 13). Future studies are recommended to determine whether partial and total body recreational uses are in fact impaired based on the sampling methods defined above.

Figure 18.

Water Quality Monitoring Sites

Sand Creek Watershed

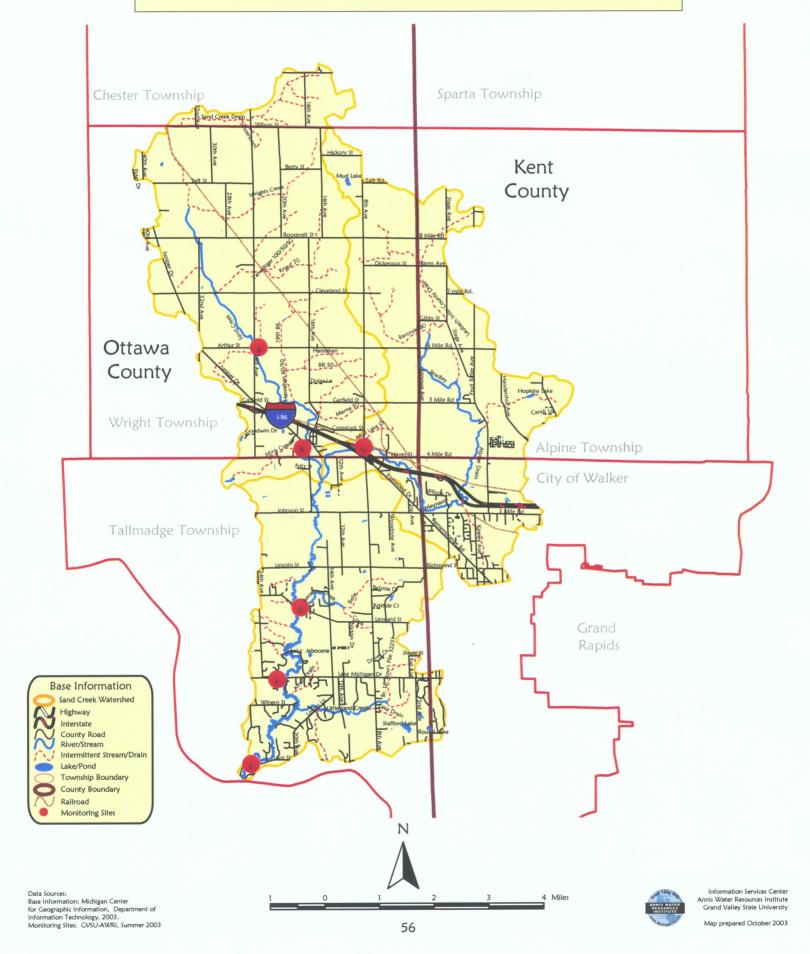


TABLE 13: SAND CREEK WATERSHED E. COLI DATA

Date	Station	E. coli
Date	Station	per 100 mL
	Arthur St.	
	Berlin Fair Dr.	
	8th Ave.	
	Leonard St.	
	Aman Park	
5/8/2003		
5/15/2003		
	Berlin Fair Dr.	
5/15/2003		
	Leonard St.	
5/15/2003	Aman Park	
		200
5/22/2003	Berlin Fair Dr.	33 *
5/22/2003		1 /
	Leonard St.	0 *
5/22/2003	Aman Park Luce St	33 *
	Arthur St.	33
	Berlin Fair Dr.	
6/5/2003		
	Leonard St.	
	Aman Park	
6/5/2003		
6/12/2003		97
	Berlin Fair Dr.	192
6/12/2003		503
	Leonard St.	253
	Aman Park	-
6/12/2003		245
6/19/2003	Arthur St.	116
	Berlin Fair Dr.	311
6/19/2003	8th Ave.	2233
6/19/2003	Leonard St.	432
6/19/2003	Aman Park	167
6/19/2003	Luce St.	193
6/26/2003		302
6/26/2003	Berlin Fair Dr.	668
6/26/2003	8th Ave.	1467
	Leonard St.	146
	Aman Park	129
6/26/2003		114
6/27/2003		
	Berlin Fair Dr.	
6/27/2003		
	Leonard St.	
	Aman Park	
6/27/2003		1500
7/2/2003		1500
	Berlin Fair Dr.	1167
7/2/2003		594
	Leonard St.	210
	Aman Park	110
7/2/2003	Luce St.	179

Date	Station	E. coli
		per 100 mL
7/10/2003		1133
	Berlin Fair Dr.	TNTC
7/10/2003		TNTC
	8th Ave. (duplicate)	TNTC
	Leonard St.	988
	Aman Park	690
7/10/2003		404
7/17/2003		341
	Berlin Fair Dr.	737
7/17/2003		522
	Leonard St.	248
	Aman Park	348
	Aman Park (dup)	219
7/17/2003		370
	Arthur St.	1200
8/6/2003	Berlin Fair Dr.	TNTC
	8th Ave.	424
	Leonard St.	1033
8/6/2003	Aman Park	1167
8/6/2003	Luce St.	768
9/9/2003	Arthur St.	231
9/9/2003	Berlin Fair Dr.	233 *
9/9/2003	8th Ave.	224
9/9/2003	Leonard St.	116
9/9/2003	Aman Park	163
9/9/2003	Luce St.	1020
9/18/2003	Arthur St.	100 *
9/18/2003	Arthur St. (duplicate)	82
9/18/2003	Berlin Fair Dr.	342
9/18/2003	8th Ave.	8100 **
9/18/2003	Leonard St.	153
9/18/2003	Aman Park	153
9/18/2003	Luce St.	432
10/14/2003	Arthur St.	< 33
	Berlin Fair Dr.	289
10/14/2003		258
	Leonard St.	< 33
10/14/2003		67 *
10/14/2003		129
10/28/2003		< 33
10/28/2003	Berlin Fair Dr.	116
10/28/2003		663
	Leonard St.	33
	Aman Park	< 33.3 *
10/28/2003		58
11/4/2003		TNTC
11/4/2003		TNTC
	Berlin Fair Dr.	TNTC
11/4/2003		TNTC
	Leonard St.	TNTC
11/4/2003	Aman Park Luce St.	TNTC
11/4/2003	Luce St.	TNTC

^{*} Arithmetic mean used since one of the observed counts was 0.

** Number represents only one of the observed counts (one of the observed counts is indefinite or too numerous to count).

^{***} Positive result but number of colonies could not be determined.

TNTC Observed count was too numberous to count (>6000).

5.5 DESIRED USES

Desired uses of a watershed are based on factors important to the watershed community. The Sand Creek Watershed Partners, the local watershed group, identified nine desired uses of the Sand Creek Watershed (Table 14). The Sand Creek Watershed is utilized for recreational uses such as fishing, hiking, bicycling, and wildflower viewing. Recreational uses of the watershed, along with the protection of agricultural lands and the preservation of green space, were identified as desired uses of the watershed by the Sand Creek Watershed Partners. Protecting wildlife habitat and corridors was also recognized as an important factor to the watershed community.

TABLE 14: DESIRED USES IN THE SAND CREEK WATERSHED

Desired Use	Goal	
Preserve green space	Identify ways to protect and preserve green space	
Maintain and protect unimpeded	Identify and discourage activities that would impede	
routes for migratory fish	migratory routes for fish (e.g. reconstruction of Root Dam)	
Preserve agricultural land	Develop zoning and adopt ordinance to permanently	
Freserve agricultural failu	preserve agricultural lands	
Protect and increase the number of	Identify critical habitat for wildlife species and ways to	
wildlife species	protect these areas	
Protect wildlife/riparian corridor	Develop zoning and adopt ordinance to establish	
Trotect whalle/hparian comdoi	permanent easements	
Enhance existing recreational trails	Enhance Musketawa Trail and trails in Aman Park	
Maintain an intact floodplain	Discourage future development and destructive	
Maintain an intact noodpiain	manipulation of the floodplain	
Protect and restore wetlands	Adopt ordinance to protect wetlands and partner with	
Trotect and restore wettands	appropriate organizations to restore wetlands	
Control invasive species that would	Raise awareness about invasive/exotic species and	
decrease the integrity of the stream	encourage planting native vegetation	
Maintain and improve public access	Identify improperly maintained public access areas and	
areas	ways to improve them	

The Sand Creek Watershed Partners have identified several projects that will enhance these desired uses. Short-term goals include the following action items listed in Table 15.

TABLE 15: SHORT TERM GOALS TO ENHANCE DESIRED USES OF THE SAND CREEK WATERSHED

1.	Develop two parks providing walkways on land owned by Wright Township (located on Berlin		
	Fair Drive) and Ottawa County (located on 24 th and Arthur).		
2.	Improve public access areas in Aman Park including installing a boardwalk on the "unofficial		
	trail".		
3.	Enhance current information stations and add additional stations along interpretive trails in		
	Aman Park to educate residents about the watershed.		
4.	Add information stations along Musketawa Trail to educate residents about the watershed.		
5.	Create a Scenic Tours brochure indicating watershed areas with native landscaping, trails,		
	parks, and other areas of interest.		

6. Work with a minimum of two farmers to install filter strips.

CHAPTER 6 WATER QUALITY GOALS

6.1 GOALS AND OBJECTIVES

The overall goal of the Sand Creek Watershed Project is to improve and protect the designated uses of the watershed. In order to achieve this overall goal, and attain compliance with the TMDL established in Sand Creek, four goals have been established and prioritized. The priority ranking was based on the priority ranking of the impaired or threatened designated uses:

- 1) Restore or improve the cold water fishery
- 2) Protect and improve the habitats of native aquatic life and wildlife
- 3) Protect and improve partial body contact recreation
- 4) Protect and improve total body contact recreation

The primary goal for the Sand Creek Watershed is to restore or improve the cold water fishery and the secondary goal is to protect and improve the habitats of native aquatic life and wildlife. Both goals can be achieved by reducing those pollutants that are known or suspected of affecting these two designated uses: sediment, nutrients, thermal pollution, harmful changes in hydrology, hydrocarbons, toxic substances, and invasive/exotic species. The third goal and fourth goal involve protecting and improving recreational uses in the watershed, which can be achieved by reducing the known and suspected pollutants affecting these uses: pathogens, hydrocarbons, toxic substances, and trash.

Objectives have been identified to reduce pollutants affecting these four impaired or threatened designated uses and thus achieve the goals established for the Sand Creek Watershed. Objectives directly related to each pollutant cause are listed and categorized by pollutant (Table 16).

TABLE 16: WATER QUALITY OBJECTIVES FOR THE SAND CREEK WATERSHED

Designated Use	Goal	Pollutants/ Impairments: known (k), suspected (s), potential (p)	Causes: known (k), suspected (s), potential (p)	Objectives
		1. Sediment (k)	Lack of Conservation and Environmental Farming Practices (k) ^{1,2}	Encourage and implement conservation and environmental farming practices
			Improper Erosion and Sediment Control Measures (k) 1,2	Encourage proper erosion and sediment control measures during construction
			Use of Sandy Gravel Vehicle Access Roads (k) ²	Encourage sediment control and better site selection for future access roads
			Poorly Maintained Public Access Areas (k) 1	Encourage proper maintenance at appropriate public access sites
			Misuse of Motorized Vehicles (ORV/Tractor) (k) ¹	Encourage proper use of motorized vehicles near stream banks
			Unrestricted Livestock Access (k) 1, 2	Exclude livestock access at impacted sites
			Harmful Changes in Hydrology (k) ^{1,2,4}	Reduce harmful changes in hydrology
			Discharge from Storm Water Outlets and Drainage Networks (k) ^{1,2}	Minimize impact of discharge from outlets and drainage networks on stream bank and reduce sediment load of storm water runoff
			Inadequate Erosion and Sediment Control Measures (k) 1,2	Encourage adequate erosion and sediment control measures at stream crossings
			Untreated Urban Runoff (k) 1,2	Treat and manage urban runoff
			Log Jams (k) ^{1,2}	Evaluate log jams on a site by site basis
	llife		Undesirable Site Selection for Animal Pastures (k) ¹	Discourage undesirable site selection for animal pastures
,e,	ry Wile		Unrestricted Livestock Access (k) 1,2	Exclude livestock access at impacted sites
/ildlif	Fishe ife &		Improper Manure Management/Application (s)	Encourage proper manure management/application
M pur	Vater atic L		Improper Disposal of Pet Waste (s)	Encourage proper pet waste disposal
Cold Water Fishery enous Aquatic Life a	1. Restore or Improve the Cold Water Fishery Improve and Protect Indigenous Aquatic Life & Wildlife	2. Nutrients (k) 1.2.8	Lack of Conservation and Environmental Farming Practices (k) ^{1,2}	Install and encourage conservation and environmental farming practices
/ater Aquat			Improper Fertilizer Management (s)	Encourage proper fertilizer management and filter/buffer strip installation
Cold Water Fishery Other Indigenous Aquatic Life and Wildlife			Improper Installation, Operation, or Maintenance (s)	Encourage proper installation, operation, and maintenance of septic systems Encourage sanitary sewers in areas serviced by water utilities
her Indi	estore		Improper Installation, Operation, or Maintenance (s)	Implement corrective actions for leaking wastewater treatment sites
PO	1. R Improve		Improper Waste Disposal (k) 1	Encourage proper composting procedures and curbside collections of yard and kitchen waste
	2.		Untreated Urban Runoff (s)	Treat and manage urban runoff
		3. Thermal Pollution (k) ⁸	Removal of Canopy on Waterways and Drainage Networks (k) 1,2	Replant and minimize the removal of the canopy on waterways and drainage networks
			Impervious Surfaces (s)	Reduce impervious surfaces and effectively manage storm water runoff
			Irrigation Practices (s)	Discourage excessive agricultural water withdrawals
			See Causes of Sediment Pollution	Reduce sediment pollution
		Hydrology (k)	Agricultural Land Use Practices (k) 1,2	Minimize future channelization of the creek/tributaries
			Agriculture and Urban Land Use Practices (k) 1,2	Manage outlet, drain, and tile discharge volume and speed more effectively
			Irrigation Practices (s)	Discourage excessive agricultural water withdrawals in the watershed
			Land Use Change (urbanization) (k) ⁶	Reduce impervious surfaces and effectively manage storm water runoff
			Failure of Root Dam (k) 1	Allow for stream recovery and stabilization from impacts caused by dam failure
			Undesirable Agricultural and Urban Land Use Practices (k) 1	Discourage future development and destructive manipulation of the floodplain
			Drainage/Deposition of Fill Material to Accommodate Agriculture and Development (k) ¹	Restore wetlands and discourage wetland drainage

TABLE 16: WATER QUALITY OBJECTIVES FOR THE SAND CREEK WATERSHED

Designated Use	Goal	Pollutants/ Impairments: known (k), suspected (s), potential (p)	Causes: known (k), suspected (s), potential (p)	Objectives
	fe	5. Hydrocarbons (k) ¹	Untreated Runoff from Gas Stations/Parking Lots/Roads (k) 1,2	Treat/manage urban runoff
	ry Wildli		Improper Waste Disposal/Spills (s)	Complete corrective actions for LUST sites and Part 201 sites of environmental contamination
Wildlif	r Fishe Life &		Improper Equipment Installation, Operation, or Maintenance (s)	Encourage proper installation, operation, and maintenance of industrial equipment
ery fe and	Improve the Cold Water Fishery ect Indigenous Aquatic Life & V		Improper Disposal of Inoperable/Dismantled Vehicles (k) 9	Properly dispose of inoperable/dismantled vehicles at unauthorized "junk yards"
Fish	e Col		Lack of Knowledge about Storm Drains (s)	Increase knowledge about storm drains
Nater Aqua	ve th digen		Improper Waste Disposal/Spills (s)	Complete corrective actions for Part 201 sites of environmental contamination
Cold Water Fishery Other Indigenous Aquatic Life and Wildlife	e or Improve the Cold Water Fishery Protect Indigenous Aquatic Life & Wildlife	6. Toxic Substances (s) (Metals,	Improper Equipment Installation, Operation, or Maintenance (s)	Encourage proper installation, operation, and maintenance of industrial equipment
Indig	estore o	Brine/Chloride,	Faulty Landfill Design (k) ⁴	Complete corrective actions for abandoned landfill
Other	1. Restore rove and P	VOCs, SOCs, etc.)	Excessive Application (s)	Determine if chloride levels exceed tolerance limits for aquatic life
	1. Re Improve		Improper Pesticide/Herbicide Management (s)	Encourage proper pesticide/herbicide management practices
		7. Invasive/Exotic Plant Species (k) 1	Purposeful/Accidental Human Introductions (k) ¹ Wind and Animal Dispersion (s)	Minimize spread of invasive/exotics species
		1 , ,	Undesirable Site Selection for Animal Pastures (k) ¹	Discourage undesirable site selection for animal pastures
			Unrestricted Livestock Access (k) 1,2	Exclude livestock access at impacted sites
			Improper Manure Management/Application (s)	Encourage proper manure management/application
		1. Pathogens (k) ⁸	Improper Disposal of Pet Waste (s)	Encourage proper pet waste disposal
			Improper Installation, Operation, or Maintenance (s)	Encourage proper installation, operation, and maintenance of septic systems Encourage sanitary sewers in areas serviced by water utilities
	ation			Implement corrective actions for leaking wastewater treatment sites
_ =	and Protect Partial Body Contact Recreation and Protect Total Body Contact Recreation		Improper Installation, Operation, or Maintenance (s)	Sample surface waters to determine if E. coli values exceed limits set for partial/total body contact recreation
reation	Contac Contac	2. Hydrocarbons (k) ¹	Untreated Runoff from Gas Stations/Parking Lots/Roads (k) 1,2	Treat/manage urban runoff
act Rec tact Re	l Body Body		Improper Waste Disposal/Spills (s)	Complete corrective actions for LUST sites and Part 201 sites of environmental contamination
Total Body Contact Recreation Partial Body Contact Recreation	and Protect Partial Body and Protect Total Body		Improper Equipment Installation, Operation, or Maintenance (s)	Encourage proper installation, operation, and maintenance of industrial equipment
tal Boc	l Protec d Prote		Improper Disposal of Inoperable/Dismantled Vehicles (k) 9	Properly dispose of inoperable/dismantled vehicles at junk yards
To			Lack of Knowledge about Storm Drains (s)	Increase knowledge about storm drains
	()	Substances (s) (Metals, Brine/Chloride, VOCs, SOCs, etc.)	Improper Waste Disposal/Spills (s)	Identify and complete corrective actions for Part 201 sites of environmental contamination
			Improper Equipment Installation, Operation, or Maintenance (s)	Encourage proper installation, operation, and maintenance of industrial equipment
			Faulty Landfill Design (k) ⁴	Complete corrective actions for abandoned landfill
			Excessive Application (s)	Determine if chloride levels exceed tolerance limits for aquatic life
			Improper Pesticide/Herbicide Management (s)	Encourage proper pesticide/herbicide management practices
		4. Trash (k) ^{1,2}	Improper waste disposal (k) ^{1,2}	Educate residents on proper waste disposal Clean up impacted areas

Information Sources:

- 1. Observations noted by staff of the Annis Water Resources Institute. August 2003.
- 2. Stream Survey of Sand Creek. 2002. Performed by Herman Miller Volunteers with support from the Michigan Department of Environmental Quality.
- 3. Biological Assessment of Sand Creek. GLEAS Survey. May 2000.
- 4. An assessment of Water Quality and Aquatic Habitat and Recommendations for the Protection and Enhancement of the Sand Creek Watershed Ottawa County and Kent County, Michigan. Annis Water Resources Institute of GVSU. January 1996.
- 5. Wetland Map. AWRI. 2003.
- 6. Land Use Map. AWRI. 2003.
- $7.\ Personal\ communication\ with\ Dave\ Fongers\ of\ the\ Michigan\ Department\ of\ Environmental\ Quality.\ October\ 2003.$
- $8. \ \ Preliminary\ Watershed\ Assessment: Sand\ Creek\ Watershed.\ Annis\ Water\ Resources\ Institute.\ 2003.$
- 9. Personal communication with the Sand Creek Watershed Partners. 2003.

6.2 FINAL WATER QUALITY SUMMARY

Nonpoint source pollution has impaired and threatened the designated uses of the Sand Creek Watershed. The use of cold water fishery has been identified as impaired and three designated uses have been identified as threatened, 1) other indigenous aquatic life and wildlife, 2) partial body contact recreation, and 3) total body contact recreation. Sediment, nutrients, thermal pollution, harmful changes in hydrology, hydrocarbons, toxic substances, pathogens, trash, and invasive/exotic species are all known or suspected of impacting the watershed's designated and desired uses. Watershed inventories have indicated that the upper watershed is impaired and has only fair water quality due to agricultural land use practices and historical channelization that has served to degrade the aquatic habitat of fish and macroinvertebrate species. Water quality improves downstream and is ranked as "good" most likely due to inputs from the East Fork and several other tributaries and a lack of the impairments affecting the upper watershed.

Project Goals

The primary goal of the Sand Creek Watershed is to restore or improve the cold water fishery. Achieving this goal will attain compliance with the TMDL indicated a "poor fish community" on Sand Creek. The secondary goal of the project is to protect and improve the habitats of native aquatic life and wildlife. The third and final goal of the watershed is to protect and improve partial body contact recreation, such as fishing and wading, followed by total body contact recreation, such as swimming. All four goals can be achieved by reducing the known and suspected pollutants affecting these uses. Structural and vegetative BMPs, policy and management BMPs, and Information and Education (I&E) activities will be needed to reduce known pollutants affecting these four impaired and threatened designated uses.

Impairments to the Coldwater Fishery and Aquatic Life/Wildlife Uses

The designated uses of 1) coldwater fishery and 2) other indigenous aquatic life and wildlife are impaired due to the following known and suspected pollutants: 1) sediment, 2) nutrients, 3) thermal pollution, 4) harmful changes in hydrology, 5) hydrocarbons, 6) toxic substances, and 7) invasive/exotic species. Sources of these pollutants result from agricultural, industrial, residential, urban, and recreational uses of the watershed.

Impairments to Partial and Total Body Contact Recreation Uses

The designated uses of partial and total body contact recreation are threatened due to the following known and suspected pollutants: 1) pathogens, 2) hydrocarbons, 3) toxic substances, and 4) trash. A few known and suspected sources of pathogens include 1) animal waste runoff/ sewage treatment sites, 2) storm water runoff, and 3) impacted groundwater plumes.

CHAPTER 7 CRITICAL AREAS

Critical areas are those geographic portions of the watershed that are or have the potential to contribute the majority of the pollutants to the waterway. Critical areas were identified to reduce the geographic scope of the watershed project so future efforts can focus on the parts of the watershed that are contributing the most pollutants. Five factors were used to assess the potential for water quality degradation and aid in the identification of critical areas: 1) land use, 2) high groundwater vulnerability, 3) high erosion potential, 4) subbasin yields – 50% chance, 24-hour storm, and 5) subbasin yields – 4% Chance, 24-hour storm. These factors were believed to best characterize the critical areas of the watershed from the information available. Critical areas were mapped using a geographic information system (GIS) and data obtained from the hydrologic model of the Sand Creek Watershed developed by the Hydrologic Studies Unit (HSU) of the MDEQ. The information below details how each of the fifteen subbasins of the Sand Creek Watershed were ranked based on each factor and how a total ranking for each subbasin was determined.

Land Use Ranking

This ranking identifies subbasins with high percentages of developed land. The total acres of agricultural and urban land uses were added together and divided by total acres of each subbasin to achieve a total percent of developed land in each subbasin. Data for this analysis came from the 1992 USGS National Land Cover Data set. Each subbasin received a numerical rank based on the percentage of developed land: (0-25% = 1), (26-50% = 2), (51-80% = 3), (81-100% = 4). A score between 1-2 was classified as slightly critical, a score of 3 was classified as moderately critical, and a score of 4 was classified as severely critical.

High Groundwater Vulnerability Ranking

This ranking used two parameters to identify subbasins with high percentages of groundwater vulnerability. The first factor was the type of hydrologic soil group. Soils that fall into hydrologic group A infiltrate water rapidly; generally water that falls on this soil group will not pond there long, but quickly percolate through the soil and into the groundwater. The second factor used was the distance of the groundwater table from the ground surface. Any areas where the groundwater table was less than six feet from the surface were considered problematic. All areas that contained both hydrologic soil group A and a high water table were considered areas of high groundwater vulnerability. Subbasins received a numerical rank based on the percentage of high groundwater vulnerability: (<=1%=1), (1.1-2%=2), (2.1-3%=3), (>3%=4). A score between 1-2 was classified as slightly critical, a score of 3 was classified as moderately critical, and a score of 4 was classified as severely critical.

High Erosion Potential Ranking

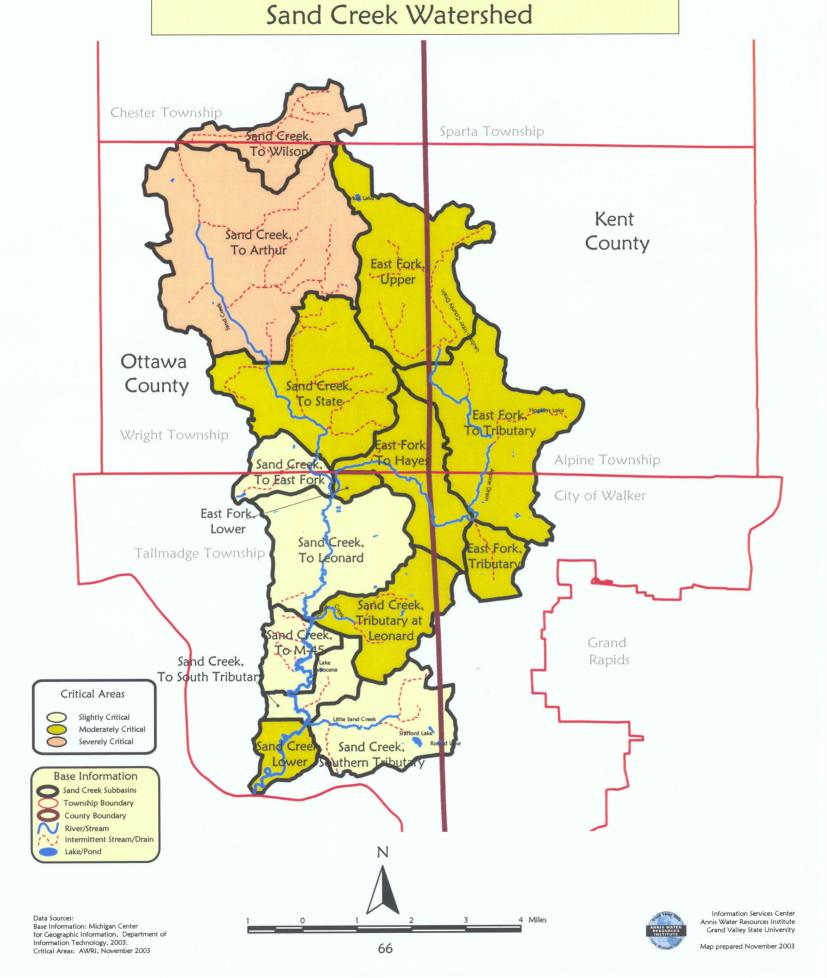
The parameter used to determine high erosion potential is the K-factor. The K-factor quantifies the degree of sheet and rill erosion for a certain soil. The average K-factor for each subbasin was calculated and ranked. Soils with K-factors greater than 0.28 are considered highly erosive (USDA 1986). Each subbasin was given a numerical rank based on the average K-value: (<=0.20=1), (0.21-0.24=2), (0.25-0.28=3), (>0.28=4). A score between 1-2 was classified as slightly critical, a score of 3 was classified as moderately critical, and a score of 4 was classified as severely critical.

Subbasin Yields – 50% Chance, 24-hour Storm Ranking

A hydrologic study was developed for the Sand Creek Watershed by the Hydrologic Studies Unit (HSU) of the Department of Environmental Quality (DEQ) in July 2003. A model was created to estimate subbasin yields (cfs/acre) during a 50% chance storm using 1998 land use data. A numerical rank was given based on the amount of each subbasin yield: ($\leq 0.01 = 1$), (0.02 - 0.03 = 2), (0.04 = 3), (>= 0.05 = 4). A score between 1-2 was classified as slightly critical, a score of 3 was classified as moderately critical, and a score of 4 was classified as severely critical.

Subbasin Yields – 4% Chance, 24-hour Storm Ranking

Similar to the subbasin yields for 50% chance, 24-hour storm ranking, subbasin yields for a 4% chance storm, using 1998 land use data, were used to rank subbasins. A numerical rank was given based on the amount of each subbasin yield: (<=0.08=1), (0.08-0.10=2), (0.11-0.12=3), (>0.12=4). A score between 1-2 was classified as slightly critical, a score of 3 was classified as moderately critical, and a score of 4 was classified as severely critical.


Total Ranking

This total ranking added the individual rankings from each of the five categories measured for the critical area analysis (Table 17). The subbasins receiving higher rankings are the most sensitive to changes within the Sand Creek Watershed. A total ranking between 8-10 was classified as slightly critical, a ranking of 11-13 was classified as moderately critical, and a ranking >13 was classified as severely critical. Two subbasins were ranked as severely critical, eight as moderately critical, and five as slightly critical. In general, north-western subbasins were the most critical while the eastern subbasins, including all subbasins of the East Fork, were the second most critical. Southern subbasins of Sand Creek, below Hayes St., were the least critical excluding the "Sand Creek, Lower" subbasin which was ranked as moderately critical (Figure 19).

TABLE 17: CRITICAL AREA RANKING SCORES FOR SUBBASINS IN THE SAND CREEK WATERSHED

Subbasin	Land Use Rank	Groundwater Vulnerability Rank	Erosion Potential Rank	50% Storm Rank	4% Storm Rank	Total Rank
Sand Creek, to Wilson	4	1	4	3	4	16
Sand Creek, to Arthur	4	4	3	2	1	14
East Fork, Lower	3	1	2	3	4	13
East Fork, Tributary	3	1	1	4	4	13
East Fork, Upper	4	1	4	2	2	13
Sand Creek, to State	4	3	2	2	2	13
Sand Creek, Tributary at Leonard	4	2	3	2	2	13
East Fork, to Hayes	3	3	2	2	2	12
Sand Creek, Lower	3	2	3	2	2	12
East Fork, to Tributary	4	1	3	2	1	11
Sand Creek, to East Fork	3	1	2	2	2	10
Sand Creek, to Leonard	3	1	3	2	1	10
Sand Creek, to M-45	3	1	3	1	1	9
Sand Creek, to South Tributary	2	2	3	1	1	9
Sand Creek, Southern Tributary	2	1	2	1	2	8

Figure 19. Critical Areas

CHAPTER 8 PROPOSED IMPLEMENTATION ACTIVITIES

8.1 RECOMMENDATIONS

The Sand Creek Watershed Partners and Rural Subcommittee of the Lower Grand River Watershed Project, in collaboration with the project manager, reviewed watershed pollutants affecting designated uses of the watershed. This was done in order to develop the recommendations needed to treat, prevent, and reduce watershed pollutants. Recommendations have been divided into three categories: structural and vegetative Best Management Practices (BMPs), Policy and Management BMPs, and Information and Education (I&E) activities. Recommendations were selected based on the objectives that were identified to reduce watershed pollutants (Table 18). It should be noted that future watershed efforts should be directed toward subbasins in the Sand Creek Watershed deemed most critical. Costs of BMP implementation and I&E activities as well as a schedule for implementation are provided (Table 19). Several potential project partners are also listed, and additional partners should be utilized to build on existing programs and share resources.

To note, the Rural Subcommittee has also developed two BMP spreadsheets that will be worth considering when selecting BMPs: 1) recommended structural and vegetative BMPs for the LGRW (Appendix F) and 2) recommended managerial BMPs for the LGRW (Appendix G). Information regarding pollutants addressed, maintenance requirements, cost, site applicability, removal reliability, etc. is provided.

8.2 TECHNICAL ASSISTANCE

In order to carry out the many recommendations identified, technical assistance is necessary. Many agencies are involved in watershed management activities either through implementing structural or vegetative Best Management Practices, implementing changes in land use policies or management, or carrying out I&E activities. The following organizations and agencies can provide technical assistance to residents, landowners, local decision makers, watershed managers, and other interested parties in the Sand Creek Watershed:

- Center for Environmental Studies
- Ducks Unlimited
- Grand Valley Metropolitan Council
- Grand Valley State University, Annis Water Resources Institute (AWRI)
- Lower Grand River Watershed Organization
- Michigan Department of Environmental Quality
- Michigan Department of Natural Resources
- Michigan State University Extension Offices
- Ottawa and Kent County Conservation Districts

- Ottawa and Kent County Drain Commissioners and Road Commissions
- Ottawa and Kent County Health, Public Works, Parks and Recreation Departments
- Sand Creek Watershed Partners
- Schrems West Michigan Trout Unlimited
- The Land Conservancy of West Michigan
- The Nature Conservancy
- Timberland Resources Conservation & Development
- U.S. Fish & Wildlife Service
- USDA Natural Resource Conservation Service (NRCS)
- West Michigan Environmental Action Council

TABLE 18: RECOMMENDED IMPLEMENTATION ACTIVITIES FOR THE SAND CREEK WATERSHED

Pollutants/ Impairments: known (k), suspected (s), potential (p)	Causes: known (k), suspected (s), potential (p)	Objectives	Structural and Vegetative BMP Recommendations	Policy and Management Recommendations	Information and Education Recommendations
	Lack of Conservation and Environmental Farming Practices (k)	Encourage and implement conservation and environmental farming practices	Promote grassed waterways, grade stabilization structures, buffer/filter strips, cover crops, critical area planting, and wetland restoration	Provide incentives to plant buffer strips 1. Promote conservation crop rotation and crop residue management 2. Work with gov't units to adopt stream buffer ordinance 3. Encourage stream buffers through the ongoing efforts of the GVMC to create a regional watershed planning process 4. Provide incentives to plant buffer strips	Targeted training workshop for farmers Distribute materials on Best Management Practices
	Improper Erosion and Sediment Control Measures During Construction (k)	Encourage proper erosion and sediment control measures during construction			Targeted training workshop for contractors and engineers (partner with county enforcing agencies). Distribute fact sheet with cost savings examples
	Use of Sandy Gravel Access Roads (k)	Encourage sediment control and better site selection for future access roads	Install water turnouts where necessary Install porous pavement	Work with gov't units to adopt stream buffer ordinance Encourage stream buffers through the ongoing efforts of the GVMC to create a regional watershed planning process Provide incentives to plant buffer strips Work with CRC to develop a policy regarding grading of dirt roads near creek	Targeted training workshop for farmers and orchard owners Distribute resources packets on available governmental/environmental agency programs
	Poorly Maintained Public Access Areas (k)	Encourage proper maintenance at appropriate public access sites	At Aman Park, construct steps on steep banks, build boardwalk on trial near creek, and install fencing to exclude access to inappropriate access areas.	Work with Grand Rapids Parks and Recreation Dept. to develop a restoration/ preservation plan for Aman Park	
	Misuse of Motorized Vehicles (ORVs/Tractors) (k)	Encourage proper use of motorized vehicles near stream banks	Build watercourse crossing to allow access to field for farmer's tractor (as identified in physical inventory)		Targeted training workshop for riparian owners Distribute "Riparian Homeowner Guidebook"
Sediment (k) ^{1,3,8}	Unrestricted Livestock Access (k)	Exclude livestock access at impacted sites	Install cattle exclusion fencing, alternative water sources, and stream crossing/livestock access		Targeted training workshop for farmers Distribute materials on Best Management Practices
	Harmful Changes in Hydrology (k)	Reduce harmful changes in hydrology		See recommendations for hydrology	
			At identified sites, install (additional) riprap/vegetation below concentrated flows for outlet protection Install hydrodynamic separator units	Work with Gov't Units to develop policy to inspect and maintain storm systems Perform an annual road/stream crossing inventory to identify problematic outlets or drainage networks	
	Inadequate Erosion and Sediment Control Measures (k)	Encourage adequate erosion and sediment control measures at stream crossings	Install (additional) riprap/vegetation on exposed stream banks and below concentrated flows. Consider critical area planting. Remove debris clogging culverts and install bridges at sites with multiple culverts.	Perform an annual road/stream crossings inventory to identify problematic stream crossings Work with the CRC to create a policy plan regarding monitoring and maintenance of crossings	
	Untreated Urban Runoff (k)	Treat and manage urban runoff	Install runoff storage/treatment systems and consider hydrodynamic separator units	Work with gov't units to develop policy to inspect and maintain storm systems Work with gov't units to develop a policy for street sweeping of new developments until final build out is complete (Partner with CRC and MDOT) Perform an annual macroinvertevrate inventory to assess conditions Catch basin cleaning	Tours of successful Best Management Practices
	Log jams (k)	Evaluate log jams on a site by site basis		Develop policy on woody debris management for Sand Creek	
	Undesirable Site Selection for Animal Pastures (k)	Discourage undesirable site selection for animal pastures		Work with gov't units to adopt stream buffer ordinance Encourage stream buffers through the ongoing efforts of the GVMC to create a regional watershed planning process Provide incentives to plant buffer strips	Targeted training workshop Distribute materials on Best Management
	Unrestricted Livestock Access (k)	Exclude livestock access at impacted sites	Install cattle exclusion fencing, alternative water sources, and stream crossing/livestock access		Practices
	Improper Manure Management/Application (s)	Encourage proper manure management/application	Build manure storage structures and install buffer/filter strips to protect water bodies from manure runoff	Work with farmers to implement Comprehensive Nutrient Management Plans (CNMPs)	
	Improper Disposal of Pet Waste (s)	Encourage proper pet waste disposal	Provide plastic bags and waste receptacles at Aman Park for waste disposal		Storm drain stenciling activities
Nutrients (k) ⁸	Lack of Conservation and Environmental Farming Practices (k) [\]	Encourage and implement conservation and environmental farming practices	Promote buffer/filter strips, cover crops, and wetland restoration.	Promote conservation crop rotation and Comprehensive Nutrient Management Plans (CNMPs). Work with gov't units to adopt stream buffer ordinance Encourage stream buffers through the ongoing efforts of the GVMC to create a regional watershed planning process Provide incentives to plant buffer strips	Targeted training workshop for farmers Distribute materials for Best Management Practices
	Improper Fertilizer Management (s)	Encourage proper fertilizer management and filter/buffer strip installation	Install buffer/filter strips	Work with gov't units to adopt policy regarding fertilizer management on public property	Target training workshop for riparian owners and farmers Distribute materials on landscaping for water quality

TABLE 18: RECOMMENDED IMPLEMENTATION ACTIVITIES FOR THE SAND CREEK WATERSHED

Pollutants/ Impairments: known (k), suspected (s), potential (p)	Causes: known (k), suspected (s), potential (p)	Objectives	Structural and Vegetative BMP Recommendations	Policy and Management Recommendations	Information and Education Recommendations	
	Improper Installation, Operation, or Maintenance of Septic Systems (s)	Encourage proper installation, operation, and maintenance of septic systems		Develop septic system inspection program. (Work with County Health Dept./Kent County Septage Plan) Work with Gov't Units to adopt septic system	Targeted training workshop Distribute Septic System Owner's Guidebook	
	staniciance of Septe Systems (s)	Encourage sanitary sewers in areas serviced by water utilities		ordinance Offer incentives to residents to properly maintain systems or hook up to sanitary sewers	2. Distribute Septic System Owner's Guideoos.	
	Improper Installation, Operation, or Maintenance of Wastewater Treatment Sites (s)	Implement corrective actions for leaking wastewater treatment sites		Complete corrective actions of impacted sites including the Wright Township Lagoon		
	Improper Waste Disposal (k)	Encourage proper composting procedures and curbside collections of yard and kitchen waste		Create and adopt ordinance prohibiting disposal of yard and kitchen waste on stream banks	Target training workshop Distribute "Riparian Homeowner Guidebook"	
Nutrients (k) 8	Untreated Urban Runoff (s)	Treat and manage urban runoff	Install runoff storage/treatment systems and consider hydrodynamic separator units	Work with gov't units to develop policy to inspect and maintain storm systems Work with gov't units to develop a policy for street sweeping of new developments until final build out is complete (Partner with CRC and MDOT) Perform an annual macroinvertebrate inventory to assess conditions Catch basin cleaning		
	Removal of Canopy on Waterways and Drainage Networks (k)	Replant and minimize the removal of the canopy on waterways and drainage networks	Establish stream buffers using native vegetation on stream banks and drains	Work with gov't units to adopt stream buffer ordinance Encourage stream buffers through the ongoing efforts of the GVMC to create a regional watershed planning process Provide incentives to plant buffer strips	Target training workshop for riparian owners Distribute materials for landscaping for water quality	
Thermal Pollution (s)	Impervious Surfaces (s)	Reduce impervious surfaces and effectively manage storm water runoff	Install porous pavement, restore wetlands, and increase runoff storage using: detention/retention ponds, infiltration or filtration systems, or vegetative treatment	1. Encourage conservation easements, land acquisitions, and cluster development through the ongoing efforts of the GVMC to create a regional watershed planning process 2. Work with gov't units to adopt stream buffer, green space protection, and wetlands ordinances 3. Provide incentives to plant buffer strips 4. Adopt model storm water ordinance but with a 0.02 cfs/ acre maximum release rate for Zone A areas for the 50% chance, 24-hour storm	Targeted training workshop for local decision makers on, and distribution of, proposed Kent/Ottawa Storm Water Ordinance Presentations throughout watershed Workshop for developers/zoning agencies to encourage reduction of impervious surfaces and alternative BMPs in new developments.	
	Irrigation Practices (s)	Discourage excessive agricultural water withdrawals in the watershed		Work with MDA & MDEQ to enforce water irrigation use Generally Accepted Agricultural and Management Practices (GAAMP)	Targeted training workshop for farmers Distribute irrigation water use GAAMP	
	See Causes of Sediment Pollution	Reduce sediment pollution		See sediment recommendations		
	Agricultural Land Use Practices (k) Agriculture and Urban Land Use Practices (k)	Minimize future channelization of the creek/tributaries Manage outlet, drain, and tile discharge volume and speed more effectively	At identified sites, install (additional) riprap/vegetation below concentrated flows for outlet protection	Work with gov't units to develop policy to inspect and maintain storm systems Perform an annual road/stream crossing inventory to identify problematic outlets	Targeted training workshop for farmers Distribute resource packets on available governmental/environmental agency programs	
	Irrigation Practices (s)	Discourage excessive agricultural water withdrawals in the watershed		Work with MDA & MDEQ to enforce water irrigation use GAAMP	Targeted training workshop for farmers Distribute irrigation water use GAAMP	
Hydrology (k) ^{3,4,7} (Harmful Changes in Stream's Flow Regime)	Land Use Change (urbanization) (k)	Reduce impervious surfaces and effectively manage storm water runoff	Install porous pavement, restore wetlands, and increase runoff storage using: detention/retention ponds, infiltration or filtration systems, or vegetative treatment	1. Encourage conservation easements, land acquisitions, and cluster development through the ongoing efforts of the GVMC to create a regional watershed planning process 2. Work with gov't units to adopt stream buffer, green space protection, and wetlands ordinances 3. Provide incentives to plant buffer strips 4. Adopt model storm water ordinance with a 0.02 cfs/ acre maximum release rate for Zone A areas for the 50% chance, 24-hour storm	Targeted training workshop for local decision makers on, and distribution of, proposed Kent/Ottawa Storm Water Ordinance Presentations throughout watershed Workshop for developers/zoning agencies to encourage reduction of impervious surfaces and alternative BMPs in new developments.	
	Failure of Root Dam (k)	Allow for stream recovery and stabilization from impacts caused by dam failure		Consult with MDNR regarding the implications of dam removal, if necessary		
	Undesirable Agricultural and Urban Land Use Practices (k)	Discourage future development and destructive manipulation of the floodplain		Work with gov't units to adopt floodplain protection ordinance	Workshop for local decision makers Distribute materials on landscaping for water quality Media releases/articles	
	Drainage/Deposition of Fill Material to Accommodate Agriculture and Development (k)	Restore wetlands and discourage wetland drainage	Restore wetlands	Adopt wetlands protection ordinance Develop partnerships with pertinent organizations to identify appropriate sites for wetland restoration.	Media releases/articles	
	Untreated Urban Runoff from Gas Stations/Parking Lots/Roads (k)	Treat/manage urban runoff	Install hydrodynamic separator units	Work with Gov't Units to develop policy to inspect and maintain storm systems Work with Gov't Units to promote oil recycling centers		

TABLE 18: RECOMMENDED IMPLEMENTATION ACTIVITIES FOR THE SAND CREEK WATERSHED

Pollutants/ Impairments: known (k), suspected (s), potential (p)	Causes: known (k), suspected (s), potential (p)	Objectives	Structural and Vegetative BMP Recommendations	Policy and Management Recommendations	Information and Education Recommendations
	Improper Waste Disposal/Spills (s)	Encourage proper installation, operation, and maintenance of industrial equipment		Nork with gov't units to distribute Farm*A*Sys Package to encourage evaluations of fuel facilities Work with MDEQ to complete corrective	
Hydrocarbons (k) ¹	Improper Equipment Installation, Operation, or Maintenance (s)	Complete corrective actions for LUST sites and Part 201 sites of environmental contamination		actions for open LUST and Part 201 sites, specifically work with LUST owner to remove 3 LUSTs at the Marathon Gas Station (Imperial #52 in Marne)	Tank (UST) owners 2. Distribute materials on alternative waste disposal
	Improper Disposal of Inoperable/Dismantled Vehicles (k)	Properly dispose of inoperable/dismantled vehicles at unauthorized "junk yards"	Work with landowners to remove inoperable/dismantled vehicles in junk yards		
	Lack of Knowledge about Storm Drains (s)	Increase knowledge about storm drains		Enforce illegal dumping regulations	Storm drain stenciling activities Advertise oil recycling programs Distribute Did you know? list
Toxic Substances (s) (Metals,	Improper Waste Disposal/Spills (s)	Encourage proper installation, operation, and maintenance of industrial equipment			Distribute materials on alternative waste disposal
Brine/Chloride, VOCs, SOCs, etc.)	Improper Equipment Installation, Operation, or Maintenance (s)	Complete corrective actions for Part 201 sites of environmental contamination		Work with MDEQ to complete corrective actions for Part 201 sites	Distribute materials on attenuative waste disposar
	Faulty Landfill Design (k)	Complete corrective actions for abandoned landfill		Complete corrective actions to address lead pollution from the Suburban Sanitary Landfill	
Toxic Substances (s) (Metals, Brine/Chloride,	Excessive Road Salt Application (s)	Determine if chloride levels exceed tolerance limits for aquatic life		Create volunteer monitoring program	
VOCs, SOCs, etc.)	Improper Pesticide/Herbicide Management (s)	Encourage proper pesticide/herbicide management practices	Install buffer/filter strips	Encourage proper pest management on farmland	1.Targeted training workshop for farmers 2. Distribute materials on alternative waste disposal 3. Promote pesticide disposal through Clean Sweep, supported by the MDA
Invasive/Exotic Plant Species (k) ¹	Purposeful/Accidental Human Introductions (k) Wind and Animal Dispersion (s)	Minimize spread of invasive/exotics species		Work with townships to plant native vegetation/rain gardens on public properties Schedule volunteer plant pulls for impacted areas	Media releases/articles
Trash (k) 1,2	Improper Waste Disposal (k)	Educate residents on proper waste disposal and clean up impacted areas	Install "No Dumping" signs	Work with gov't units to promote recycling centers	Schedule volunteer river clean-ups Participate in the "adopt-a-highway program" through MDOT
	Undesirable Site Selection for Animal Pastures (k)	Discourage undesirable site selection for animal pastures		Work with gov't units to adopt stream buffer ordinance Encourage stream buffers through the ongoing efforts of the GVMC to create a regional watershed planning process Provide incentives to plant buffer strips	Targeted training workshop Distribute materials on Best Management Practices
	Unrestricted Livestock Access (k)	Exclude livestock access at impacted sites	Install cattle exclusion fencing, alternative water sources, and stream crossing/livestock access		Fractices
	Improper Manure Management/Application (s)	Encourage proper manure management/application	Build manure storage structures and install buffer/filter strips to protect water bodies from manure runoff	Work with farmers to implement Comprehensive Nutrient Management Plans (CNMPs)	
D 1	Improper Disposal of Pet Waste (s)	Encourage proper pet waste disposal	Provide plastic bags and waste receptacles at Aman Park for waste disposal		Storm drain stenciling activities
Pathogens (k) ⁸		Encourage proper installation,		Develop septic system inspection program. (Work with County Health Dept./Kent County Septage Plan)	
	Improper Installation, Operation, or Maintenance of Septic Systems (s)	operation, and maintenance of septic systems Encourage sanitary sewers in areas		Work with gov't units to adopt septic system ordinance	Targeted training workshop Distribute "Septic System Owner's Guidebook"
		serviced by water utilities		Offer incentives to residents to properly maintain systems or hook up to sanitary sewers	
	Improper Installation, Operation, or	Implement corrective actions for leaking wastewater treatment sites		Complete corrective actions of sites including Wright Township Lagoon	
	Maintenance of Wastewater Treatment Sites (s)	Sample surface waters to determine if E. coli values exceed limits set for partial/total body contact recreation		Create volunteer monitoring program	

TABLE 19: SCHEDULE, COST ESTIMATES, AND POTENTIAL PARTNERS FOR IMPLEMENTATION ACTIVITIES

	Proposed Recommendations	Pollutant Addressed	Estimated Unit Cost	Potential Partners	Implementation Schedule
	Build manure storage structures	N, P	\$36-\$198/1,000 gallons	NRCS, Landowners	Short term 0-5 years
	Build watercourse crossing (for tractor crossings)	S	\$382/linear foot - box culvert \$1,125/linear foot - bridge	NRCS, Landowners	Short term 0-5 years
	Plant vegetation on exposed streambanks and below concentrated flows	H, S	Seed: \$450/acre Sod: \$13,068/acre Mulch: \$500/acre	CRC	Short term 0-5 years
	Establish grade stabilization structures	S	\$4,650/structure or \$800/vegetated chute	NRCS, Landowners	Short term 0-5 years
	Plant cover crops	S, N	\$30/acre	NRCS, Landowners	Short term 0-5 years
	Implement critical area planting	S	\$460 - 815/acre	NRCS, Landowners	Short term 0-5 years
	Install cattle exclusion fencing	S, N, P	\$1.90/foot of fence	NRCS, Landowners	Short term 0-5 years
	Construct steps at Aman Park	S	\$20/each	Grand Rapids Parks & Rec. Dept.	Short term 0-5 years
	Construct stream crossing and livestock access at impacted sites	S, N, P	\$2,100/crossing	NRCS, Landowners	Short term 0-5 years
us	Install alternative water sources	S, N, P	\$1,050/water facility	NRCS, Landowners	Short term 0-5 years
latio	b .	S	\$2/linear foot	Grand Rapids Parks & Rec. Dept.	Short term 0-5 years
nmend	Install a boardwalk on "unofficial trail" in Aman Park	S	\$25/linear foot \$15/ hour for labor	Grand Rapids Parks & Rec. Dept.	Short term 0-5 years
Recon	Install buffer strips	S, N, TP, P, TS	\$900/acre - forested \$225/acre - herbaceous	NRCS, Landowners	Short term 0-5 years
MP	Install filter strips	S, N, I, P	\$19/acre	NRCS, Landowners	Short term 0-5 years
and Vegetative BMP Recommendations	Install "No Dumping" signs	Т	\$50/sign	Grand Rapids Parks & Rec. Dept., Landowners, Gov't Units	Short term 0-5 years
eget	Install riprap	S	\$ 70/square yard	CRC, Gov't Units, Landowners	Short term 0-5 years
nd V	Install water turnouts	S	\$200-600/each	CRC, Gov't Units	Short term 0-5 years
ural ar	Plant grassed waterways	S	\$800/acre (without tile) \$4,500/acre(with tile)	NRCS, Landowners	Short term 0-5 years
Structural	Provide plastic bags and waste receptacles at Aman Park	N, P	\$65/each station	Grand Rapids Parks & Rec. Dept.	Short term 0-5 years
	•	S	\$10/yard	CRC, Gov't Units	Short term 0-5 years
	Work with landowners to remove inoperable/dismantled vehicles in "junk yards"	НС	\$300 for removal 30 hours/site	Gov't Units	Long term 5-10 years
	Install porous pavement	S, H, TP	\$2/square foot - porous concrete \$0.5-\$1/square foot - porous asphalt	CRC; Gov't Units, Landowners	Long term 5-10 years
	Install runoff storage/treatment systems	TP, H, S, N	\$1/ft ³ of storage - wet detention pond \$8/ft ³ of storage - infiltration trench \$0.50/ft ² vegetated swale or biofiltration	Gov't Units, Landowners	Long term 5-10 years
	Install hydrodynamic separator units	S, HC, T, N	\$15,000/acre of impervious surface	Gov't Units	Long term 5-10 years
	Restore wetlands	TP, H, N, S	\$2,350/acre - wetland restoration \$200 (Cost to landowner to break tile/build berm if wildlife org. is involved.)	NRCS, USFWS, DU, FSA, MDA, Landowners	Long term 5-10 years
Policy and Management Recommendations	Adopt model storm water ordinance with a 0.02 cfs/ acre maximum release rate for Zone A areas from the 50% chance, 24-hour storm	ТР, Н	\$2000/ordinance	Gov't Units	Short term 0-5 years
nd M	Implement conservation crop rotation	S	\$4/acre	NRCS, Landowners	Short term 0-5 years
licy an Recon	Implement crop residue management	S	\$28-36/acre (includes no-till, strip till, and ridge till)	NRCS, Landowners	Short term 0-5 years
P_0	Implement catch basin cleaning	N	\$96/annually	Gov't Units	Short term 0-5 years

TABLE 19: SCHEDULE, COST ESTIMATES, AND POTENTIAL PARTNERS FOR IMPLEMENTATION ACTIVITIES

	Proposed Recommendations	Pollutant Addressed	Estimated Unit Cost	Potential Partners	Implementation Schedule
	Implement pest management	TS	To be determined	NRCS, Landowners	Short term 0-5 years
	Implement Comprehensive Nutrient Management Plans (CNMPs)	N, P	\$5/acre	NRCS	Short term 0-5 years
	Work with Gov't Units to distribute Farm*A*Syst Package to encourage evaluations of fuel facilities	НС	\$12/package	CCD, MSUE, Gov't Units, Landowners, SCWP	Short term 0-5 years
	Develop septic system inspection program. (Work with Kent County Septage Plan)	N, P	\$25-50/meeting + 8 staff hours \$600/Dye test; \$100/Staff investigation per property	CHD, Gov't Units	Short term 0-5 years
	Perform an annual road/stream crossing inventory to identify problematic outlets or drainage networks	S, H	\$60/day for volunteer mobilization	Drain Commissioners, CRC, NRCS, Landowners, Gov't Units, SCWP	Short term 0-5 years
	Perform an annual road/stream crossings inventory to identify problematic stream crossings	S	\$60/day for volunteer mobilization	CRC, Gov't Units, Landowners	Short term 0-5 years
	Perform an annual macroinvertebrate inventory to assess conditions	S	\$60/day for volunteer mobilization	Soil and Water Conservation Society of GVSU, SCWP	Short term 0-5 years
Cont'd	Schedule volunteer plant pulls for impacted areas	I	\$60/day for volunteer mobilization	CCDs, Grand Rapids Audubon Society, Landowners, Gov't Units, SCWP	Short term 0-5 years
ations Cc	Work with CRC to develop a policy regarding grading of dirt roads near creek	S	\$25-50/meeting + 8 staff hours	CRC, Gov't Units	Short term 0-5 years
nmenda	Work with gov't units to promote recycling oil centers	НС	\$25-50/meeting + 8 staff hours	Gov't Units	Short term 0-5 years
t Recor	water irrigation use GAAMP	ТР, Н	\$25-50/meeting + 8 staff hours	MDA and MDEQ	Short term 0-5 years
Management Recommendations	Work with the CRC to create a policy plan regarding monitoring and maintenance of crossings	S	\$25-50/meeting + 8 staff hours	CRC, Gov't Units, SCWP	Short term 0-5 years
l Ma	Create volunteer monitoring program	TS, P	\$7,000/6 months	Landowners, Gov't Units, SCWP	Short term 0-5 years
Policy and	Work with township to plant native vegetation/rain gardens on public properties	I	\$25-50/meeting + 8 staff hours	Gov't Units, WMEAC, Landowners, SCWP	Short term 0-5 years
	Encourage stream buffers through the ongoing efforts of the GVMC to create a regional watershed planning process	S, N, TP, H, P	\$25-50/meeting + 8 staff hours (Currently cost is paid for by the Grand Valley Metro. Council)	Gov't Units	Short term 0-5 years
	Develop policy regarding woody debris management for Sand Creek	S	\$25-50/meeting + 8 staff hours	Gov't Units, NRCS, Timberland RC&D	Short term 0-5 years
	Provide incentives to plant buffer strips	S, N, TP, H, P	5-10% of actual cost: \$475/acre - forested \$250/acre - herbaceous	NRCS, Landowners	Short term 0-5 years
	Adopt wetlands protection ordinance	Н, ТР	\$2000/ordinance	Gov't Units, SCWP	Long term 5-10 years
	Adopt septic system ordinance	N, P	\$2000/ordinance	Gov't Units, SCWP	Long term 5-10 years
	Create and adopt green space protection ordinance	ТР, Н	\$8,000/ordinance	Gov't Units, SCWP	Long term 5-10 years
	ordinance	Н	\$8,000/ordinance	Gov't Units, SCWP	Long term 5-10 years
	Complete corrective actions of sites including Wright Township Lagoon	N, P	\$25-50/meeting + 8 staff hours	MDEQ	Long term 5-10 years
	Implement fertilizer management on public lands	N	\$25-50/meeting + 8 staff hours	Gov't Units	Long term 5-10 years

TABLE 19: SCHEDULE, COST ESTIMATES, AND POTENTIAL PARTNERS FOR IMPLEMENTATION ACTIVITIES

	Proposed Recommendations	Pollutant Addressed	Estimated Unit Cost	Potential Partners	Implementation Schedule
	Complete corrective actions to address lead pollution from the Suburban Sanitary Landfill	TS	\$25-50/meeting + 8 staff hours	MDEQ	Long term 5-10 years
	implications of dam removal	Н	\$25-50/meeting + 8 staff hours	MDNR	Long term 5-10 years
	Create and adopt ordinance prohibiting disposal of yard and kitchen waste on stream banks	N	\$8,000/ordinance	Gov't Units	Long term 5-10 years
	Enforce illegal dumping regulations	HC, TS	To be determined	Gov't Units	Long term 5-10 years
Cont'd	Offer incentives to residents to properly maintain systems or hook up to sanitary sewer	N, P	\$30 incentive/inspection or hook up	Gov't Units	Long term 5-10 years
Recommendations Co	Encourage policies regarding conservation easements, land acquisitions, and cluster development	ТР, Н	\$25-50/meeting + 8 staff hours	NRCS, Land Conservancy, and Gov't Units	Long term 5-10 years
ommer	Adopt stream buffer ordinance	S, N, H, P	\$2000/ordinance	Gov't Units, SCWP	Long term 5-10 years
Management Rec	Work with gov't units to develop a policy for street sweeping for new developments until final build out is complete	S	\$25-50/meeting + 8 staff hours	Gov't Units, CRC, SCWP	Long term 5-10 years
and Mana	Work with gov't units to develop policy to inspect and maintain storm systems	S, N, H, HC	\$25-50/meeting + 8 staff hours	Gov't Units, SCWP	Long term 5-10 years
Policy 8	Work with Grand Rapids Parks & Rec. Dept. to develop a restoration/preservation plan for Aman Park	S	\$25-50/meeting + 8 staff hours	Grand Rapids Parks & Rec. Dept., SCWP	Long term 5-10 years
	Work with MDEQ to complete corrective actions for open LUST and Part 201 sites, specifically work with LUST owner to remove 3 LUSTs at Imperial #52 in Marne	НС	\$25-50/meeting + 8 staff hours	MDEQ	Long term 5-10 years
	Work with MDEQ to complete corrective actions for Part 201 sites	TS	\$25-50/meeting + 8 staff hours	MDEQ	Long term 5-10 years
	Develop partnerships with pertinent organizations to identify appropriate sites for wetland restoration	Н	\$25-50/meeting + 8 staff hours	NRCS, USFWS, DU, FSA, MDA, Landowners	Long term 5-10 years
suc	Advertise oil recycling programs	HC, TS	\$500/banner \$100/set of flyers 40 staff hours	Landowners, Gov't Units, CCD, SCWP	Short term 0-5 years
ndatio	Distribute Did you know? list	HC, TS	30 staff hours	Landowners, Gov't Units, CCD, SCWP	Short term 0-5 years
and Education Recommendations	Distribute "Operating and Maintaining UST Systems in Michigan" to UST owners	НС	24 staff hours	Landowners, Gov't Units	Short term 0-5 years
tion R	Distribute fact sheet with cost saving examples	S	16 staff hours	Landowners, Gov't Units, CCD, SCWP	Short term 0-5 years
Educa	Distribute materials on Best Management Practices (BMPs)	S, N, P	24 staff hours	Landowners, Gov't Units, NRCS, CCD, MSUE	Short term 0-5 years
	Distribute materials on alternative waste disposal	HC, TS	16 staff hours	Landowners, Gov't Units, CCD, SCWP	Short term 0-5 years
Information	Distribute materials on landscaping for water quality	N, TP, H	16 staff hours	Landowners, Gov't Units, CCD, SCWP	Short term 0-5 years
JuI	Distribute resources packets on available governmental/environmental agency programs	S, H	16 staff hours	Landowners, Gov't Units, CCD, SCWP	Short term 0-5 years

TABLE 19: SCHEDULE, COST ESTIMATES, AND POTENTIAL PARTNERS FOR IMPLEMENTATION ACTIVITIES

	Proposed Recommendations	Pollutant Addressed	Estimated Unit Cost	Potential Partners	Implementation Schedule
	Distribute "Riparian Homeowner Guidebook"	S, N	16 staff hours	Landowners, Gov't Units, CCD, SCWP	Short term 0-5 years
	Distribute "Septic System Owner's Guidebook"	N, P	16 staff hours	Landowners, Gov't Units, SCWP	Short term 0-5 years
Cont'd	Distribute irrigation water use GAAMP	ТР, Н	16 staff hours	Landowners, Gov't Units, CCD, MDA, SCWP	Short term 0-5 years
	Distribute proposed Kent/Ottawa Storm Water Ordinance	ТР, Н	16 staff hours	Gov't Units, CCD	Short term 0-5 years
endati	Media releases/articles	H, I	\$100/media kit	Newspapers, Radio Stations, CCD, SCWP	Short term 0-5 years
Recommendations	Presentations throughout the watershed	ТР, Н	\$20/each 6 staff hours/ presentation	CCD, MDEQ, MSUE	Short term 0-5 years
Education Re	Promote pesticide disposal through Clean Sweep, supported by the MDA	TS	16 staff hours	MDA and CCD	Short term 0-5 years
	Storm drain stenciling activities	N, HC, TS, P	\$0.45/inch Mylar, \$5-6/ceramic, >\$100/each	Landowners, Gov't Units, CCD, SCWP	Short term 0-5 years
ation and	Targeted training workshops for farmers, residents, gov't units, etc.	N, P, S, TP, H, TS, I	\$100/workshop + 16 staff hours	CCD, Gov't Units, Landowners	Short term 0-5 years
Information	Schedule volunteer river clean-ups	Т	\$200 + 60 staff hours	CCD, Gov't Units, Landowners	Short term 0-5 years
I	Tours of successful Best Management Practices (BMPs)	S	\$250/tour + 32 staff hours	Landowners, Gov't Units, CCD	Short term 0-5 years
	Participate in the "adopt-a-highway program" through MDOT	Т	\$150 + 40 staff hours	Landowners, CCD, SCWP	Long term 5-10 years

Pollutant Reference: S = Sediment; N = Nutrients; TP = Thermal Pollution; H = Hydrology; HC = Hydrocarbons; TS = Toxic Substances; I = Invasive/Exotic Plant Species; T = Trash; P = Pathogens

Potential Partners: CCD = County Conservation District; CDC = County Drain Commission; CRC = County Road Commission; DU = Ducks Unlimited; MDA = Michigan Department of Agriculture; MDEQ = Michigan Department of Environmental Quality; MDNR = Michigan Department of Natural Resources; MDOT = Michigan Department of Transportation; NRCS = Natural Resources Conservation Service; USFWS = U.S. Fish and Wildlife Service; MSUE = Michigan State University Extension; FSA = Farm Service Agency; CHD = County Health Department; Timberland RC&D = Timberland Resource Conservation & Development; SCWP = Sand Creek Watershed Partners

CHAPTER 9 INFORMATION & EDUCATION STRATEGY

Introduction

The Sand Creek Watershed Information & Education (I&E) Strategy is based on the larger I&E Strategy being formulated for the Lower Grand River Watershed Management Plan. An I&E Strategy is needed to help motivate the watershed's stakeholders, residents and other decision makers to take actions necessary to protect the water quality and environmental conditions in the watershed. The Sand Creek I&E strategy will serve as a working document that outlines the major steps and actions needed to successfully maintain and improve water quality and environmental conditions in the Sand Creek Watershed.

SECTION I: STRATEGY COMPONENTS

The primary goal for the Sand Creek Watershed is to restore or improve the cold water fishery and the secondary goal is to protect and improve the habitats of native aquatic life and wildlife. Both goals can be achieved by reducing those pollutants that are known and suspected of affecting these two designated uses. These pollutants include the following: sediment, nutrients, thermal pollution, harmful changes in hydrology, hydrocarbons, toxic substances, and invasive/exotic species. The third goal and fourth goal involve protecting and improving recreational uses in the watershed which can be achieved by reducing the known and suspected pollutants affecting these uses. These pollutants include the following: pathogens, hydrocarbons, toxic substances, and trash.

I&E Strategy Goal

The I&E strategy will help to answer the question, "How will the I&E efforts help to achieve the watershed management goal?" The I&E efforts will achieve the watershed management goal by increasing the involvement of the community in watershed protection activities through awareness, education, and action. The watershed community can become involved only if they are informed of the issues and are provided information and opportunities to participate.

Key Target Audience

Based on the I&E goal for the Sand Creek Watershed Project, key target audiences, whose support is needed to achieve the watershed management goal, have been identified. Although the overall audience for the I&E strategy is extremely broad, two major categories have been identified: 1) users of watershed resources and 2) local decision-makers. Both categories are further broken down to include the following:

Category 1 - Watershed residents, the agricultural community, business owners, builders/developers, environmental/recreational groups, schools (K-college), homeowners, and watershed managers.

Category 2 - Locally elected officials and municipal employees.

Audience Characteristics

The level of understanding of watershed management, the types of values and concerns, and the level of enthusiasm that people have for participation in watershed management activities are expected to differ across the diverse groups that make up the community. Understanding these differences is critical to targeting appropriate audiences, developing effective messages and means of participation, and motivating them to become involved in the watershed management process. Section 1 of Appendix H includes summary information that describes the makeup of the audiences, shows how they receive information on environmental issues, identifies their existing level of knowledge on watershed issues, and outlines the communication tools used to reach their constituents. Table 1 of Appendix H also provides specific distribution tools for each audience.

Recommended Strategy Objectives

Specific objectives have been developed to achieve the I&E goals. These objectives will move the audience through the phases of outreach: 1) awareness, 2) education, and 3) action. The messages and formats used to achieve these outcomes will vary with each audience. Four major objectives must be met to achieve the I&E goal. Under each objective specific tasks and products will be developed to address how the objective will be achieved. Table 1 of Appendix H includes a summary of the tasks and activities to be conducted to achieve the objectives.

- Objective 1 Awareness: Make the target audience aware that they live in a watershed with unique resources and that their day-to-day activities affect the quality of those resources. (Categories 1 and 2)
- Objective 2 Education: Educate target audiences on the link between urban development, agricultural activities, and water quality impacts as well as highlight what actions can be taken to reduce impacts. (Categories 1 and 2)
- Objective 3 Action: Motivate the audience to adopt and implement practices that will result in water quality improvements. These practices may include homeowner activities such as reducing fertilizer application, maintaining septic systems, purchasing properties with low-impact design elements, maintaining stream buffers on their properties, or supporting land use planning practices in the watershed. (Category 1)
- Objective 4 Action: Incorporate watershed protection activities into land use planning decisions. (Category 2)

Developing and Distributing Effective Messages

The objectives of the I&E strategy all involve raising awareness, educating people on problems and solutions, and motivating people to participate in activities to protect the Sand Creek Watershed, which will in turn protect a portion of the Lower Grand River Watershed. The I&E strategy will need to communicate effectively with the wide range of audiences that make up the Sand Creek Watershed community to achieve these objectives. Specific messages will be developed to make the different audiences aware of the issues and to support the watershed management effort. These messages should be repeated frequently to make an impact on the audience. Each audience will respond differently to the information presented, and it is critical

that team members tailor the information to meet the needs of the audience. The members of each audience must understand specifically how the information being presented affects them. Messages have been developed for various audiences based on the available information on target audiences. Throughout the Sand Creek Watershed, these messages should be validated and modified based on new information collected from the community. Some key messages include the following:

- The Sand Creek Watershed is within the larger Lower Grand River Watershed, which is a
 unique resource in which everyone can enjoy and take pride. A list of "Did you know?"
 factoids that highlight unique features of the watershed can be prepared.
- Take part in shaping your future. Residents need to know how they can participate in land use planning decisions. A checklist should be developed that shows them who to contact and where their input is needed.
- The following statements can be used to help assure stakeholders that their involvement will be fruitful.
- Protecting our watershed also protects your pocketbook. The connection for landowners and businesses between a healthy watershed and economic return is an important message. Information should be collected on revenue generated from recreational users of the watershed and farming operations and on the property values along the river.
- We have the tools to help you get the job done. As audiences move from awareness to education, they need to be informed of the resources that may be available to them to help implement changes. Farmers, businesses, and local officials are more likely to participate if they are given access to resources and technical assistance.

Formats

Because the target audience is so broad, multiple formats will be used to reach these audiences and to reinforce the messages over time. These formats will be phased in over time as the audiences move from awareness to education and finally to action. Efforts will be largely focused on using media outlets (such as local press and established government publications, radio, and public television) to make the audiences aware of the issues in the watershed during the awareness phase. General background materials will be developed for project team members to use when working with the various audiences. These materials include a general brochure, slide show, updated web site, and traveling display. Formats that focus on solutions and actions that can be taken to help improve and preserve the water quality in the Sand Creek Watershed will be developed as the audiences become more aware of the watershed project. These formats include presentations throughout the watershed, articles in the larger project newsletter, *The Grand River Beacon*, and technical workshops. Table 18 of Chapter 8 supplies activities to be conducted for each format. Table 1 of Appendix H summarizes the target audiences using the different formats. Specific formats to be developed include the following:

- Fact Sheets: Fact sheets may be produced similarly to the general brochure but targeted to specific audiences as the I&E strategy progresses.
- "Did You Know" Questions or Watershed Factoids: A set of 10 or more characteristics that highlight the unique features of the watershed should be developed to be included in the brochure and fact sheets. Audiences respond very well to fun facts and tidbits about their

community. This list will help to reinforce the concept that Sand Creek is worth protecting and improving. Once developed, this list can be disseminated through a variety of means: aired as public service announcements, printed in brochures and fact sheets, posted on the display, printed in newspapers or news inserts, and reproduced on other materials.

- Media: The primary tool to be used in the awareness phase for all audiences is the media. These markets include newspapers such as the Grand Rapids Press and The Advance. Radio stations include WBCT-FM, WBFX-FM, WOOD-AM, WOOD-FM, WSNX-FM, WTKG-AM, WVTI-FM, WKLQ-FM, WMUS-FM, and WMRR-FM. Public access stations include GRTV and WGVU/WGVK TV. The more often the target audiences read articles on watershed issues or watch watershed-related information on television, the more likely they are to respond and participate in the process. Keeping the message in front of people is vital to keeping them interested. News stories will be written with a local angle, be of interest to many people, or have a human-interest component. At a minimum, an article that mentions something about issues on the watershed project should appear monthly. Producing articles about other activities in the watershed project, such as the stream crossing inventories or model ordinances, provides an excellent opportunity for coordination with the rest of the watershed efforts. A press kit that includes background information on the project with quotes from local representatives, a map of the watershed with political boundaries, and contact information will be prepared.
- Newspapers: Articles should appear on a regular basis in all sections of the paper—human
 interest, sports, editorials, and news features. If possible, a regular column in the local paper
 that highlights activities regarding the development of the watershed plan should be initiated.
 For example, quizzes can be developed for readers and announcements can be inserted
 regarding field sampling days or field trips.
- Public Access Channels: As part of the initial awareness efforts, and throughout the
 watershed assessment process, information should be posted on both television and radio
 public access stations. This coverage can be accomplished in a variety of formats, such as
 public service announcements, a talk show, filming sampling events out in the field, showing
 examples of water quality degradation, or covering events such as a watershed fair or storm
 drain stenciling. Television stations should be contacted whenever an event is planned.
- Area Newsletters: In addition to submitting articles for publication in the local press, articles should be regularly submitted to periodicals in the watershed to which the target audiences subscribe. Each article should be tailored to the interests of the publication. Table 2 of Appendix H includes contact information for these periodicals.
- The Grand River Beacon: The Lower Grand River Watershed project has developed a periodic news insert, The Grand River Beacon, that provides updates on the watershed project. The news insert is distributed to more than 4,000 people throughout the Lower Grand River Watershed. A regular article highlighting the Sand Creek Watershed could be submitted for each new edition.
- Watershed Presentations: Presentations are a very effective means to reach a variety of audiences and allow the presenter to get immediate feedback. Project team members will make presentations using the slide show developed for specific audiences. Key opportunities for making presentations include local schools, commissioner meetings, homeowner association meetings, local business meetings, and regional business meetings. At each presentation, a brief "show what you know" survey will be handed out to determine the

audience's level of understanding. A follow-up survey will be sent one month after the event to determine any changes in the audience's knowledge.

• Targeted Training Workshops: Topic specific workshops will be held for local decision makers, businesses, and other audiences in the watershed. These workshops will be scheduled once the project team members have initiated a dialogue with these audiences and determined the topics of greatest interest. The workshops may be presented as a stand-alone workshop or in conjunction with other activities sponsored by the target audiences.

Distribution

The materials identified in the previous Formats section will be distributed through a variety of mechanisms. One of the most effective means of distributing information is to piggyback onto existing materials received by the target audience, such as the materials used by local governments and the Lower Grand River Project. This approach helps to leverage resources, and materials are more likely to be seen by the audience, since they are already familiar with the format. Table 2 of Appendix H lists some of the communication tools currently used by the target audiences. These tools will be used to the extent possible to distribute information about the Sand Creek Watershed.

Evaluation

Evaluation provides a feedback mechanism for continuous improvement of the I&E strategy. Evaluation tools must be built into the strategy at the beginning to ensure that accurate feedback is generated. Indicators of success will be developed throughout the planning and implementation phases to help the project team members determine whether the objectives have been achieved. The indicators selected must include several parameters, not just the number of brochures mailed out or how many people attended a meeting. To successfully determine if the objectives were met, a pre-survey and post-survey is useful. Such a survey can be conducted by mail, telephone, or in person. The kind of information needed includes the following:

- Demographic information on the audience
- Knowledge of the message
- How they heard about the meeting or event
- Current practices around their property
- Interest level in watershed issues
- Change in practices or behavior based on information received

Table 19 of Chapter 8 summarizes the tasks and schedule for implementation. Section 3 of Appendix H gives detailed information on the proposed tasks and tracking indicators to evaluate the success of the task. Although evaluation of specific components within the I&E strategy will occur continuously, project team members will hold evaluation sessions semi-annually for the purpose of reviewing the entire I&E strategy. Section 2 of Appendix H can be used as a guide when reviewing the status of the I&E strategy.

SECTION II: STRATEGY IMPLEMENTATION & ADMINISTRATION

Organizing Strategy Administration

Implementation of the I&E component will involve project partners and can be coordinated by Grand Valley State University's Annis Water Resources Institute (AWRI). Funding for the I&E strategy can be provided from a variety of sources including: Section 319 funds, other US EPA grants, community foundations, local units of government, sportsperson organizations, and the Michigan Department of Transportation.

Roles and Responsibilities

The I&E strategy can be primarily be administered from AWRI. The project manager would be responsible for administering the strategy and will coordinate activities with other organizations such as Michigan Department of Environmental Quality, West Michigan Environmental Action Council, Grand Valley Metro Council, Timberland RC&D, Ottawa/Kent County Conservation Districts, township planners, zoning administrators, drain commissioners, and Trout Unlimited. The responsibilities of project staff will include the following:

- Overseeing of the project
- Obtaining grants or appropriations
- Establishing strategy development milestones and tracking progress
- Obtaining volunteer support
- Advertising the strategy
- Participating in activities

Project Partners

The Lower Grand River Watershed Project has already formed partnerships with several other organizations throughout the watershed. These partners will help maximize the use of limited resources by assisting with the development and distribution of I&E materials. As the project progresses, more partnerships can be formed. Current partners of the Lower Grand River Watershed Project are listed in Table 3 of Appendix H.

Project Priorities

Project priorities need to be established to direct resources to the areas that will realize the greatest benefits. The Lower Grand River Watershed project has determined that the following public education activities will be considered highest priority in terms of resource allocation:

- Activities that build on existing efforts: These activities include watershed programs in adjacent areas, land use planning efforts, and statewide programs.
- Activities that consider future regulatory requirements, such as NPDES Phase II Storm Water Regulations, and TMDL actions.
- Activities that must be conducted to lay the foundation for future efforts, such as awareness campaigns and baseline surveys.
- Activities that strengthen relationships or form partnerships within the watershed.
- Activities that leverage external funding sources (such as grants).

Resources

Communities and foundations can be solicited to help fund this project. Table 19 of Chapter 8 outlines the estimated resources and recommended timeline needed to accomplish the proposed tasks. The implementation of I&E activities will be phased in and will be coordinated with the other watershed efforts. Implementation will depend on several factors, including staff resources, technical capabilities, and interest shown by various key partners. Section 3 of Appendix H outlines a worksheet to be used as the main tool to track project progress.

CHAPTER 10 METHODS OF MEASURING AND EVALUATING PROJECT

10.1 PLANNING PHASE EVALUATION

The two-year planning phase of the Lower Grand River Watershed Project began on July 1, 2002 and will end on July 31, 2004. The Project Evaluation Team, made up of members from the project committees, will perform an evaluation of the planning phase for the Lower Grand River Watershed Project. The evaluation will address the five project focus areas: watershed assessment and characterization, information and education strategy, system of regional governance, Best Management Practice (BMP) review and recommendations, and project management. Since this evaluation will address the success of the Sand Creek Watershed Project according to these five areas, it will serve as the evaluation component for the planning phase of this project.

The Project Evaluation Team met on March 12, 2003 to generate a list of potential evaluation questions to assess each of the five project areas noted above. The questions addressed issues related to the goals and objectives, organizational arrangements, processes, and outputs of each project area. On July 30, 2003 the project evaluation team met in order to identify and select the most appropriate evaluation tools to answer the evaluation questions previously identified. The list of evaluation tools, considered by the team, was adapted from the W.K. Kellogg Foundation Evaluation Handbook, published in January 1998. The evaluation tools are described in Table 20. Potential evaluation questions and tools, as they relate to the five project focus areas, are listed in Table 21. At this time, the Project Evaluation Team also determined appropriate audiences for particular evaluation tools and questions, identified and categorized questions appropriate for evaluating Project Year 1 and Project Year 2, and identified opportunities for distributing or conducting particular portions of the evaluation. The final Lower Grand Watershed Project Evaluation Report will be prepared by Tetra Tech, Inc. and completed at the conclusion of the planning phase of the LGRW Project.

TABLE 20: PLANNING PHASE EVALUATION TOOL OPTIONS

Tool	Definition
1. Observation	This tool involves watching the activities of project staff and participants, and is useful when conducting context and implementation evaluations. Through this tool, the evaluator may identify strengths and weaknesses in the operations of the project and offer suggestions for improvement.
2. Interview	Through this tool, the evaluator can learn how project staff and participants view their experiences with the program and gain an in-depth understanding of hard-to-measure concepts, such as participation, empowerment, and cohesiveness. Interviews help the evaluator to understand how a project actually works and can produce useful information for individuals who wish to replicate the project. The evaluator may choose to give different types of interviews, such as informal conversational interviews where there are no predetermined questions, to closed-field response interviews where the evaluator asks participants to choose from fixed responses.
3. Focus Group	This tool is essentially a group interview. The evaluator can use this tool when confidentiality is not a concern and when obtaining a range of opinions on a topic is necessary. In this type of interview setting, a group of six to eight individuals meet for a few hours to respond to a series of predetermined questions. The goal is for participants to state what they think about these series of questions, and to serve as a catalyst for generating thoughts and observations that they might not have thought of individually.
4. Survey	To obtain feedback from a broad audience, an evaluator may choose to develop and administer this type of evaluation tool. Surveys can vary in length and type of question, depending on where and how it is to be administered and the type of information the evaluator would like to obtain. Surveys can use a mix of open- and close-ended questions that will allow the evaluator to easily translate standard responses, but also obtain detailed information on perception and values.
5. Content Analysis	Internal project documents are a valuable source of evaluation data. This tool focuses on conducting a detailed review and analysis of internal project documents, such as progress reports, strategies, outreach materials, summaries, meeting minutes, and project schedules. Coupled with other evaluation tools, content analysis of internal project documents can provide the evaluator with a mechanism for comparing the intent of the project with the reality of the project. Reviewing and analyzing these types of documents also serve as an efficient way for the evaluator to gain insights into project participation, decision-making processes, and changes in project development.

TABLE 21: POTENTIAL PROJECT EVALUATION QUESTIONS AND EVALUATION TOOL OPTIONS

Project Focus Area	Goals and Objectives	Organizational Arrangements	Processes	Outputs
Watershed Assessment and Characterization	Does the management plan reflect stakeholders' concerns as well as priority areas identified through the watershed characterization? Tool Options: Content analysis of management plan and Grand River Forum worksheet results (2/20/03) Are Phase II issues/concerns of watershed partners reflected in the watershed management plan? Tool Options: Content analysis of management plan Focus group and/or survey of local watershed partners to capture Phase II issues/concerns	Does the structure or the context of the project lead to better project outcomes (e.g., availability of resources, access to data, participation)? Tool Options: Survey of project partners within each subcommittee Focus group of select representatives of each subcommittee Content analysis of subcommittee meeting summaries	Did the project have full participation? Tool Options: Content analysis of complete listing of project partners compared to subcommittee attendance records Focus group of select representatives of subcommittees to discuss perceptions about project participation Does the assessment follow a standard operating procedure? Tool Options: Content analysis of documentation on process used to conduct watershed assessment and characterization Are the processes used unique to this watershed or are they transferable to other watersheds? Tool Options: Identification of lessons learned through survey and/or focus group	Was the assessment of the watershed accurate? Tool Options: • Conduct in-field verifications of any assumptions made in developing the management plan Were the tools used to assess the watershed the right tools? Tool Options: • Focus group of project partners and representatives of subcommittees Do the pilot projects accurately characterize the Lower Grand River watershed? > Does the public agree? > Do the data support the selection of the pilot projects? Tool Options: • Compare pilot projects selected by subcommittees to those identified through the Grand River Forum worksheet results (2/20/03) • Compare overall watershed data to baseline data collected for the pilot project areas
Information and Education Strategy	Were the appropriate target audiences identified? For the project? For the watershed? Tool Options: Focus group of subcommittee members and Grand Forum participants Content analysis of the final I&E strategy to examine processes used to identify target audiences	Were the appropriate stakeholders on the Information and Education Strategy team? Tool Options: Focus group and/or survey of members of the I&E subcommittee, as well as other project partners	Was focusing on awareness now the right approach to take? Tool Options: Baseline survey of stakeholders throughout the watershed to determine existing level of awareness conducted via quiz on educational materials and/or project web site Was developing the brochure and the news inserts by subcommittee an effective process? Tool Options: Focus group with I&E subcommittee members Content analysis of subcommittee meeting minutes Review of final products	Did people in the Grand Forum read and use the products developed through the I&E Strategy? Tool Options: Build feedback mechanism into educational products that allows project team to track use and user awareness Count numbers of products distributed throughout the watershed Survey of Grand Forum participants Were the news inserts and brochures effective in raising awareness? Tool Options: Baseline survey of stakeholders throughout the watershed to determine existing level of awareness conducted via quiz on educational materials and/or project web site Build feedback mechanism into educational products that allows project team to track use and user awareness

Project Focus Area	Goals and Objectives	Organizational Arrangements	Processes	Outputs
System of Regional Governance	Does the new watershed organization represent all existing activities and interests? Tool Options: Analysis of participants in new watershed organization compared to overall interests within the Lower Grand River watershed Does the strategic plan for the new watershed organization define how it will be sustained over time? Tool Options: Content analysis of strategic plan to identify mechanisms for ensuring sustainability	Does the new watershed organization maintain the identity and viability of smaller subwatershed groups? Tool Options: Survey of smaller subwatershed groups Focus group with members of smaller subwatershed groups Personal interviews with members of smaller watershed groups	Do other organizations within the watershed know and understand the purpose and functions of the new watershed organization? Tool Options: Survey of smaller subwatershed groups Focus group with members of smaller subwatershed groups Personal interviews with members of smaller watershed groups Is the process for establishing the new watershed organization defined? Does the process involve all stakeholders? Are there effective mechanisms in place for obtaining partner and public input? Tool Options: Content analysis of the strategic plan Focus group with members of the steering committee and other subcommittees	Does the new watershed organization effectively serve as a resource to other groups within the watershed? Tool Options: Survey of smaller subwatershed groups Focus group with members of smaller subwatershed groups Personal interviews with members of smaller watershed groups Does the summary of existing efforts and organizations capture all relevant existing programs? Tool Options: Content analysis of the final summary Content analysis of comments on the summary provided by reviewers Survey and/or focus group of subwatershed groups
BMP Review and Recommendations	Are the baseline conditions of each pilot area established? Tool Options: Content analysis of watershed characterization report to identify baseline data and conditions Content analysis of all related pilot project selection information Are effective evaluation mechanisms for determining BMP effectiveness being developed as BMPs are identified (i.e., monitoring plans)? Tool Options: Content analysis of BMP prioritization process and matrix, and any additional documentation related to BMP recommendations Survey and/or focus group of rural and urban subcommittee members to discuss development of evaluation mechanisms	Does the strategy for evaluating BMPs leverage partner resources? Tool Options: • Content analysis of documentation related to BMP evaluation implementation • Focus group with subcommittee members involved in developing BMP evaluation mechanisms to discuss allocation of resources Is there an assessment of resources available from all partners to support monitoring/evaluation of BMPs? Tool Options: • Content analysis of documentation related to BMP evaluation implementation • Focus group with subcommittee members involved in developing BMP evaluation mechanisms to discuss allocation of resources	Were BMPs selected based on a set of BMP evaluation criteria that addressed all aspects of feasibility (e.g., technical, financial, social acceptance, legal, etc.)? Tool Options: Content analysis of BMP prioritization process and matrix	Was a mix of short- and long-term BMPs identified? Tool Options: Content analysis of prioritization process and matrix Content analysis of selected systems of BMPs for urban and rural areas Are long-term BMPs feasible? Tool Options: Content analysis of BMP prioritization process and matrix Survey of watershed stakeholders Focus group with participants in Grand Forum Did the assessment of BMPs reach target audiences? Tool Options: Build feedback mechanism into educational products that allows project team to track use and user awareness Count numbers of products distributed throughout the watershed Survey of Grand Forum participants and other project partners

Project Focus Area	Goals and Objectives	Organizational Arrangements	Processes	Outputs
Project Management	Is a basin approach (versus a sub-watershed approach) effective in attaining resources for the watershed? Tool Options: Track number of funded grant proposals and other requests for funds Track funding of small subwatershed groups before and after 319 project implementation Have matching commitments from local governments been met for this project? Tool Options: Analysis of project budget to determine if local governments have met their matching commitments Conduct focus group and/or interview with local governments to determine reasons that matching commitments to determine reasons that matching commitments have not been met	How much of the project success is based on actual individuals versus partner organizations? Tool Options: Focus group with members of the subcommittees and the Grand Forum Focus group of local governments that contributed matching funds Content analysis of project documentation to identify any changes in organizational processes, deliverable schedules, decision-making capabilities, etc. during the project period of performance that may track with changes in key project individuals (e.g., Director of Grand Valley Metro. Council)	Were on-going sub-watershed activities promoted and sustained while engaging in this larger basinwide project? Tool Options: Focus group of smaller subwatershed groups Interviews with smaller subwatershed groups Content analysis of progress reports and/or annual reports of subwatershed groups and activities to identify areas that may signify smaller groups suffered during this larger basinwide project (e.g., decreases in funding, missed deadlines, decreases in volunteers, canceled events, etc.)	Was the project funder given review time that the contract calls for? Tool Options: Content analysis of progress reports and the project contract to compare timelines of proposed review schedules with actual dates when project deliverables were submitted for review Were project budgets realistic? Tool Options: Comparison of proposed project budgets with actual project expenditures Focus group with key project managers to discuss budget and schedules What activities were accomplished that go beyond the requirements of the grant? Tool Options: Focus groups with members of the subcommittees and the steering committee Content analysis of progress reports compared to the original grant requirements

10.2 IMPLEMENTATION PHASE EVALUATION

The evaluation of the implementation phase will be divided into two types: 1) that which will assess the effectiveness of Information and Education (I&E) tools, and 2) an assessment of structural and vegetative BMPs as well as policy and management BMPs. In both instances, a Steering Committee will be organized from watershed stakeholders, with the Sand Creek Watershed Partners being a logical source for membership. The Steering Committee will oversee all project activities and will be asked to measure the success of structural and vegetative BMPs, policy and management BMPs, and I&E activities as they relate to project goals and objectives. This will result in a written summary to be included as part of the regular progress reports due to the Michigan Department of Environmental Quality (MDEQ).

With regard to the effectiveness of Information and Education (I&E) tools, a subcommittee will be appointed by the steering committee to help direct I&E efforts. The subcommittee will agree to the appropriateness of all I&E tools by membership vote. Protocols established for I&E activities as part of the Lower Grand Watershed Project will be incorporated in this proposed project thus ensuring the identification of target audiences, selection of appropriate messages, and development of evaluation tools. The I&E subommittee's performance will be measured by the Steering Committee and be included in the regular progress reports to MDEQ as mentioned previously. It is suggested that a pre-project and post-project survey be developed to measure general knowledge about watershed issues and willingness to support improvement efforts. This survey will require a MDEQ approved Quality Assurance Project Plan (QAPP). Additional I&E evaluation technique options are provided in Table 20 and can also be considered for evaluation of I&E tools and activities by the I&E subcommittee.

Evaluation of physical improvements will include qualitative and quantitative measurements. Potential evaluation techniques were adapted from the Lower Grand River WMP and are provided in Table 22. These techniques were selected based on the pollutants identified as impairments to designated uses. Examples of techniques include pollution reduction calculations, visual observations, benefit to cost comparisons, MDEQ biological surveys, monitoring, etc. Along with evaluation techniques, units of measurement, measurable goals, and evaluation partners are suggested. The results of the evaluation are to be included as a separate report to MDEQ at the conclusion of the implementation project.

TABLE 22: EVALUATION TECHNIQUES FOR THE IMPLEMENTATION PHASE

Impairment	Evaluation Technique	Units of Measurement	Measurable Goals	Partners in Evaluation
Sediment	Pollution reduction calculations	Tons of sediment prevented from entering the waterways	Reduction of sediment load entering waterways	Michigan Department of Environmental Quality (MDEQ), Natural Resources Conservation
	Implementation of BMPs	Number and location of BMPs implemented	Implement BMPs on all identified sites according to implementation	Service (NRCS), Consultants Municipal and county departments of public works (DPWs)
	Photographs of BMPs installed	Before and after photographs	schedule Portfolio of photographs with supporting documentation	Municipalities, MDEQ
	Benefit to cost comparisons	Pollutant load reduction compared to cost of BMP implemented	Economic impact of pollutant load reduced outweighs cost of BMP implementation	Municipalities, Contractors, Consultants
	Macroinvertebrate surveys	Water quality assessment	Increased ranking of water quality	WMEAC, GVSU, MDEQ
	MDEQ biological surveys	Fish, habitat, and physical properties of water	Increased rating of fish, habitat, and physical properties	MDEQ
	Creel surveys	Amount, size, and species of fish caught	Establish baseline use and increase number of fishers using the stream and the number of fish caught	Michigan Department of Natural Resources (MDNR), conservation organizations
Pathogens	Pet waste collection bags	Number of pet waste collection bag sites in parks	Document increase of use of pet waste collection bags	County and municipal park departments, pet stores, humane society, Sand Creek Watershed Partners
	Water quality monitoring	Pathogen counts per 100 ml	Meet water quality standards of 1,000 count <i>E.coli</i> /100 ml for partial body contact recreation and 130 count/100 ml in areas for total body contact recreation	County health departments, MDEQ
	Elimination of sources	Number and location of sources identified	Eliminate all identified sources of <i>E. coli</i>	Municipalities, county health departments, agricultural producers
	Benefit to cost comparisons	Reduced health risks compared to cost of BMP implemented	Economic impact of reduced health risks outweigh cost of BMP implementation	Municipalities, contractors, consultants

Impairment	Evaluation Technique	Units of Measurement	Measurable Goals	Partners in Evaluation
Nutrients	Pollution reduction calculations	Pounds of nutrients prevented from entering waterways	Reduction of phosphorous and nitrogen load entering waterway	MDEQ, NRCS, consultants
	Implementation of BMPs	Number and location of BMPs implemented	Implement BMPs on all identified sites according to implementation schedule	DPWs, county departments
	Photographs of BMPs installed	Before and after photographs	Portfolio of photographs with supporting documentation	Municipalities, MDEQ, Sand Creek Watershed Partners
	Benefit to cost comparisons	Pollutant load reduction compared to cost of BMP implemented	Economic impact of pollutant load reduced outweighs cost of BMP implementation	Municipalities, contractors, consultants
	MDEQ biological surveys	Fish, habitat, and physical properties of water	Increased rating of fish, habitat, and physical properties	MDEQ
	Creel surveys	Amount, size, and species of fish caught	Establish baseline use and increase number of fishers using the stream and the number of fish caught	MDNR, conservation organizations
Trash	Stream cleanups	Number of volunteers at event	Increase number of volunteers at stream cleanup events every year	WMEAC, youth groups, church groups, business, community service programs, Sand Creek Watershed Partners
	Trash removal	Pound of trash removed from waterways	Increase in number of areas selected for trash removal and inspection	DPWs, youth groups, community service programs, Sand Creek Watershed Partners
Thermal Pollution	MDEQ biological surveys	Fish, habitat, and physical properties of water	Increased rating of fish, habitat, and physical properties	MDEQ
	Volunteer stream monitoring	Average high summer water temperatures	Maintain temperatures that meet MDNR criteria for cold water streams	MDNR, WMEAC, conservation organizations
	Riparian buffer analysis	Number of miles of riparian buffers	Increased use of riparian buffer protection and restoration	Drain commissioners, conservation districts, conservation organizations
	Impervious surface calculations	Amount of impervious cover by subwatershed	Changing development rules to limit amounts of impervious cover in developments	DPWs, planning agencies, GVMC

Impairment	Evaluation Technique	Units of Measurement	Measurable Goals	Partners in Evaluation
Hydrology	Hydrologic analysis	Peak flow	No increase in storm water runoff from new development	Drain commissioners, planning agencies, GVMC
	Storm water ordinance adoption	Number of communities with a storm water ordinance	All communities in the LGRW have adopted a storm water ordinance	Drain commissioners, planning agencies, GVMC
Invasive/Exotic Species	Volunteer habitat restoration	Number of volunteers at event	Increase number of volunteers at restoration events every year	WMEAC, Land conservancies, conservation districts, Sand Creek Watershed Partners
	MDEQ biological surveys	Habitat quality	Increased rating of habitat	MDEQ
Toxic Substances	Water quality monitoring	Absence/presence based on level of detection	Reduction in number of detections/stream section	MDEQ, consultants
	Implementation of managerial BMPs	Number of managerial BMPs implemented	Implement BMPs with all identified partners according to implementation schedule	MDEQ, USDA - NRCS, consultants
Hydrocarbons	Water quality monitoring	Absence/presence based on level of detection	Reduction in number of detections/stream section	MDEQ, consultants
	Visual observation	Number of oil sheens/stream section	Reduction in number of oil sheens/stream section	WMEAC, Sand Creek Watershed Partners, conservation districts
	Hydrologic analysis	Hydrographs of peak flows	Reduction of peak flows by limiting impervious cover, minimizing channelization of streams, and restoration of wetlands and storage areas.	MDEQ, consultants
	Impervious cover calculations	Percentage of impervious cover in the LGRW	Changing development rules to limit amount of impervious cover in the LGRW	GVSU, REGIS, MDEQ, consultants
	Photographs of BMPs installed	Before and after photographs	Portfolio of photographs with supporting documentation	Municipalities, MDEQ, Sand Creek Watershed Partners

CHAPTER 11 SUSTAINABILITY

To ensure that the efforts and outcomes of this project, as well as other ongoing watershed projects in the Grand River Watershed, are more effectively coordinated and prioritized on a comprehensive watershed-wide basis, the Lower Grand River Watershed (LGRW) management plan is anticipating the creation of an ongoing Lower Grand River Watershed organization. Through input of the Grand River Forum, the LGRW Steering Committee is forming a more comprehensive persisting organization to sustain the future value of this effort and to someday reach a long-term vision adopted for the entire LGRW. Such an organization can also coordinate with the Upper Grand River Watershed Project to ensure harmonization of similar efforts for the entire Grand River Basin.

The Sand Creek WMP will provide the Sand Creek Watershed Partners the details on how to implement recommendations to reach more immediate goals and objectives of the Sand Creek WMP and the long range visions of the LGRW Management Plan. It is expected that through a new LGRW organization, these sub-basin recommendations will be extrapolated for use and adoption in other rural areas of the LGRW experiencing similar problems. Furthermore, this WMP will be the basis on which Phase II communities will write their Storm Water Pollution Prevention Initiative, which outlines implementation recommendations of the Sand Creek WMP.

LOWER GRAND RIVER WATERSHED ORGANIZATION

A number of watershed groups within the state of Michigan are actively involved in watershed improvement and protection. Within the Lower Grand River Watershed, the Rogue River, Coldwater River, Sand Creek, and Bear Creek Watersheds are actively working to improve the water quality of their rivers, lakes, and streams. Stakeholders of the LGRW have expressed their desire for every subwatershed within the Grand River Watershed to 1) design plans and implement projects through a more comprehensive Watershed Management Plan (WMP) at the Lower Grand River level and 2) carry out coordinated recommendations at a more localized level.

To achieve this goal, the Grand River Forum has envisioned a future Lower Grand River Watershed organization that would serve as an umbrella under which area subwatershed groups could operate. This organization would provide the opportunity for subwatershed groups to work together and share information and resources to collectively reach the overall goals and objectives of the LGRW. Based upon a preliminary evaluation of several other watershed organizations throughout Michigan, the LGRW Steering and Visioning Committees have envisioned an organization that would likely include representatives from local governmental units, environmental organizations, and existing subwatershed groups. The purpose of this organization would be based upon a widely held watershed vision and supported by a mission and set of strategies established in the LGRW project to maintain long-term continuity for all watershed initiatives. The Visioning Committee and the Grand River Forum have created a vision, mission statement, and set of core values for this purpose:

• LGRW Vision:

Swimming, drinking, fishing, and enjoying our Grand River Watershed: Connecting water with life.

LGRW Mission Statement:

Discover and restore all water resources and celebrate our shared water legacy throughout our entire Grand River Watershed community.

• LGRW Core Values:

LGRW activities are diverse, inclusive, and collaborative.

LGRW efforts are sustainable and high quality.

LGRW images and messages create a widely shared sense of legacy and heritage.

LGRW methods and products are holistic and employ a systems approach.

LGRW organization and program evaluates progress and rewards success.

Watershed studies, data sources, and publications regarding the Lower Grand River Watershed will be critical to the LGRW organization in identifying priorities and priority areas within the watershed in order to facilitate future projects. Much of this information has been compiled through the LGRW project and can be found on the project's website (http://www.gvsu.edu/wri/isc/lowgrand/library.htm).

SAND CREEK WATERSHED PARTNERS

The Sand Creek Watershed Partners (Partners), in collaboration with several project partners, will oversee the implementation of recommendations. This watershed organization's mission statement is: "Work together to achieve and maintain desired water quality, stream stability, and biological integrity in Sand Creek to benefit current and future generations". The Partners have been involved with several projects to date including two macroinvertebrate inventories, a road/stream crossings inventory, development of a hydrologic model, logo development, as well as development and distribution of several Information and Education (I&E) materials. Recently they have partnered with Timberland Resource Conservation and Development (RC&D) and designated board members to further strengthen their group. A possible 319 project and upcoming implementation activities will offer this group an opportunity to build on their past achievements and protect and restore the designated uses of the Sand Creek Watershed. Participation in the future Lower Grand River Watershed organization will allow the Partners to share in watershed information and resources, participate in basin-wide oversight and prioritization of water quality concerns, and take part in achieving the overall goals of the LGRW project.

UPPER GRAND RIVER WATERSHED COUNCIL

The Upper Grand River Watershed (UGRW), located mainly in Jackson and Ingham Counties, was nearing the completion of the UGRW Project at the beginning of the Lower Grand River Watershed Project in July 2002. The steering committee of the UGRW was working toward similar goals to create a sustainable watershed organizational structure within the limitations of existing programs, organizations, and agencies. The steering committee found that existing efforts were limited by a geographic scope that did not include the entire UGRW. It was then recommended that an organization be formed to represent the interests of the entire UGRW and provide sustainability of the efforts initiated through the project. The ultimate goal of the resulting organization is to coordinate efforts with the Lower Grand River Watershed Project and to eventually expand their geographic scope to the entire Grand River Watershed. Coordination with the Upper Grand River Watershed Project will ensure harmonization of goals and objectives for the entire Grand River Basin.

NPDES PHASE II COMMUNITIES

Portions of four of the five local governmental units within the Sand Creek Watershed have been identified by the U.S. Environmental Protection Agency (EPA) as having urbanized areas requiring a National Pollutant Discharge Elimination System (NPDES) storm water permit.

Wright, Tallmadge, and Alpine Townships as well as the city of Walker are required by the EPA to develop Storm Water Pollution Prevention Initiatives (SWPPIs) in accordance with NPDES Phase II Storm Water Regulations. The Sand Creek Watershed Management Plan (WMP) can serve as a guide for these communities to understand water quality concerns and voluntary actions needed to meet water quality goals. The NPDES Phase II Storm Water Regulations creates an opportunity for these communities to implement recommendations made through the Sand Creek Management Plan as compliance standards in their SWPPIs.

.

GLOSSARY

Escherichia coli (E. coli) – bacterium used as an indicator of the presence of waste from humans and other warm-blooded animals.

Fecal coliform – bacteria found in the feces of human and other warm-blooded animals.

Filter strips – a strip or area of vegetation for removing sediment, organic matter, and other pollutants from runoff water and wastewater.

Impervious surface – surface that does not allow runoff to slowly percolate in to the ground. Water remains above the surface, accumulates, and runs off in large amounts. Examples include roads, parking lots, sidewalks, and rooftops.

Macroinvertebrate – any animal without a backbone, or spinal column that can be seen without using a microscope; the classification includes all animals except fishes, amphibians, reptiles, birds, and mammals.

Moraine – an accumulation of earth, stones, and other debris deposited by a glacier. Some types are terminal, lateral, medial, and ground.

Nonpoint source pollutants – pollution caused when rain, snowmelt, or wind carry pollutants off the land and into waterbodies.

Pathogen – any microorganism or virus that can cause disease.

Riparian buffers – an area of trees, shrubs, and other vegetation located in areas adjacent to and upgradient from water bodies.

Storm water runoff – the runoff and drainage of precipitation resulting from rainfall or snowmelt or other natural precipitation event.

Subbasin/Subwatershed – smaller drainage area within the watershed.

Substrate – a part, substance, etc. which lies beneath and supports another.

Tributary – a stream that flows into a larger stream or body of water.

BIBLIOGRAPHY

Annis Water Resources Institute. 1996. An Assessment of Water Quality and Aquatic Habitat and Recommendations for its Protection and Enhancement of the Sand Creek Watershed, Ottawa and Kent County, Michigan.

Cairns, J., Jr. 1977. Aquatic ecosystem assimilative capacity. Fisheries 2(2):5-7.24.

Environmental Protection Agency (EPA). (2002, November 26). Drinking Water Contaminants. Retrieved October 16, 2003 from http://www.epa.gov/safewater/hfacts.html

Judy, R. D., Jr., P. N. Seeley, T. M. Murray, S. C. Svirsky, M. R. Whitworth, and L. S. Ischinger. 1984. 1982 National Fisheries Survey, volume 1. Technical report: initial findings. U.S. Fish and Wildlife Service FWS-OBS-84/06.

K. E. Wehrly, M. J. Wiley, and P. W. Seelbach. January 2003. Transactions of the American Fisheries Society; "Classifying Regional Variation in Thermal Regime Based on Stream Fish Community Patterns". Volume 132, Number 1. Pages 18-38.

Michigan Department of Agriculture (MDA). 2003. Climatology Program. Michigan State University. 417 Natural Sciences Building. East Lansing, MI 48824. http://35.9.73.71

Michigan Department of Environmental Quality (MDEQ). 1997. Qualitative biological and habitat survey protocols for wadable streams and rivers. GLEAS Procedure No. 51.

Michigan Department of Environmental Quality, Surface Water Quality Division, Lansing, Michigan.

Michigan Department of Environmental Quality (MDEQ). 2002. Clean Water Section 303(d) List. Report # MI/DEQ/SWQ-02/013

Michigan Department of Environmental Quality (MDEQ). (2003, November 7). Leaking Underground Storage Tank Sites List. Retrieved November 7, 2003 from http://www.deq.state.mi.us/lustcs/

Michigan Department of Environmental Quality (MDEQ). (2004, June 30). Part 201 Site Search. Retrieved July 7, 2004 from http://www.deq.state.mi.us/part201ss/

Michigan Department of Natural Resources (MDNR), Institute for Fisheries Research. 1982. *VSEC Metadata*. Pp. 5.

Michigan Department of Natural Resources. 2000. Designated Trout Streams for the State of Michigan. Report # F0-210.01

Natural Resources Conservation Service- United States Department of Agriculture (NRCS-USDA). 2003. *Technical Guide to RUSLE use in Michigan*. Pp. 12

Natural Resources Conservation Service- United States Department of Agriculture (NRCS-USDA). 1991. *Technical Guide to Cropland Interpretations*. Pp. 2

Plant Conservation Alliance (PCA). (2003, August 12). Alien Plant Invaders of Natural Areas. Retrieved December 1, 2003 from http://www.nps.gov/plants/alien/list/v.htm

Rithcie, J.C. 1972. Sediment, fish, and fish habitat. Journal of Soil and Water Conservation 27:124-125.

The Nature Conservancy (TNC). (2003). Invasive Plants in Your Backyard. Retrieved December 1, 2003 from http://nature.org/initiatives/invasivespecies/features/index.html

The Nature Conservancy (TNC). (2004, March) Problem Plants. Retrieved June 30, 2004 from http://nature.org/initiatives/invasivespecies/files/problem_plants.pdf

The Nature Conservancy (TNC). (2004, March). The Invasive Species Initiative. Retrieved June 30, 2004 from http://tncweeds.ucdavis.edu/esadocs.html

United States Department of Agriculture (USDA). 1972. Soil Survey of Ottawa County, Michigan. Pp. 35, 48, 130.

United States Department of Agriculture, Natural Resource Conservation Service, United States Forest Service, Soil Survey of Kent County, Michigan, April 1986.

United States Department of Agriculture, Natural Resource Conservation Service, United States Forest Service, Soil Survey of Ottawa County, Michigan, 1972.

APPENDICES

APPENDIX A BIOLOGICAL ASSESSMENT OF SAND CREEK

MICHIGAN DEPARTMENT OF ENVIRONMENTAL QUALITY SURFACE WATER QUALITY DIVISION MAY 2000

14 99

14 100

STAFF REPORT

BIOLOGICAL ASSESSMENT OF SAND CREEK OTTAWA AND KENT COUNTIES, MICHIGAN AUGUST 26, 1993 AND SEPTEMBER 16, 1996

Qualitative biological sampling of Sand Creek was conducted by staff of the Great Lakes Environmental Assessment Section (GLEAS) on two occasions: August 26, 1993 and September 16, 1996. The 1993 survey was requested by the Surface Water Quality Division, Grand Rapids District Office, because of potential impacts from soil erosion, sedimentation, and excessive runoff associated with changing land uses and urban development within its watershed. Prior biological and habitat surveys of Kent County streams suggest that influences from growth and development in Grand Rapids, Rockford, and suburbs have substantially degraded the quality of several areas stream (Stegman Creek, Becker Creek, Little Cedar Creek, Duke Creek, and Armstrong Creek). The 1996 survey was requested by the Land and Water Management Division (LWMD) to assess the biological integrity of Sand Creek and evaluate potential impacts associated with illegal periodic water withdrawals for crop irrigation by a private landowner. Biological sampling in all surveys was conducted following the methods described in GLEAS Procedure #51 (MDEQ, 1997).

Sand Creek originates in the east-central portion of Ottawa County, near Conklin, and flows through Marne into the Grand River west of Grand Rapids. The stream is approximately 20 miles in length and entirely within the Southern Michigan Northern Indiana Till Plains (SMNITP) ecoregion (Omernik and Gallant, 1988). The headwaters of Sand Creek are dominated by agricultural land use.

Grand Rapids District, Fisheries Division, staff indicated that Sand Creek has historically been a managed coldwater stream requiring rotenone treatments to eliminate undesirable fish followed by stocking brown trout (*Salmo trutta*) and steelhead (*Oncorhynchus mykiss*). This stocking was also done to augment the stream's apparent limited ability to support and sustain natural reproduction of salmonids.

A total of three stations were sampled in the 1993 survey: the uppermost station located just upstream of Arthur Street (Station 1a), a middle reach located just upstream of Lincoln Street (Station 2a), and just downstream of Route 45 (Station 3a). Stations 1a, 2a, and 3a are located about 11, 5.5, and 3 miles upstream from the Grand River confluence, respectively (Figure 1). The East Fork Sand Creek was not assessed because of lack of adequate stream flow during the survey period. Two stations were sampled in the 1996 survey, one upstream of the withdrawal site (Station 1b, just upstream of Cleveland Street) and one downstream (Station 2b, just upstream of Arthur Street; Figure 1).

SUMMARY

 Locations of the biological sampling stations on Sand Creek for the 1993 (1a – 3a) and 1996 (1b and 2b) surveys are shown in Figure 1. Location information is summarized in Tables 3 (1993) and 6 (1996). The results of fish sampling and multimetric evaluations of macroinvertebrate communities are provided in Tables 1A and B (1993), 4A and B (1996), 2A and B (1993), and 5A and B (1996), respectively. Qualitative assessments of the physical habitat at each survey location are provided in Tables 3 (1993) and 6 (1996). A summary of the qualitative ratings for macroinvertebrates and habitat is provided in Table 7.

BIOLOGICAL SAMPLING RESULTS - 1993

Fish - 1993

The fish community sampling results indicated that the fish community at Station 1a, a second order reach of the stream with a width of about 18 feet and a 9 cfs flow during the survey, was dominated by a central mudminnow (*Umbra limi*) population (58% of the total numbers of fish). Stations 2a and 3a, both third order reaches, were dominated by mottled sculpin (*Cottus bairdi*) populations (59 and 40% of the total number of fish, respectively). The stream segments surveyed at Stations 2a and 3a were 35 and 50 feet in width and at the time had estimated flows of 26 and 100 cfs, respectively (Tables 1A and B).

Station 1a had a general paucity of taxa and predominance of tolerant species at this site (Table 1B). The two downstream sites (2a and 3a) both showed and increase in taxa and the presence of rainbow and brown trout (*Oncorhynchus mykiss* and *Salmo trutta*, respectively), and other intolerant taxa like mottled sculpin (Table 1A). Some variation in size classes of the salmonids captured indicated that limited reproduction was potentially occurring, particularly at Station 3a. Percent salmonid composition at Stations 2a and 3a were 2.3 and 7.1%, respectively, thereby meeting designated uses for a coldwater stream; Station 1a (0%) did not meet designated use according to this criterion.

Macroinvertebrates - 1993

The macroinvertebrate communities at Stations 1a, 2a, and 3a (Tables 2A and B) were all rated acceptable based on comparison with reference stream scores. Clay/silt deposition on colonizable substrate effectively reduced habitat for the macroinvertebrate community at each site, particularly at Stations 2a and 3a. Channelization of the stream at and upstream of Station 1a substantially reduced the availability of suitable macroinvertebrate habitat. Instability of existing habitat was also impacted by seasonal extremes in stream flows, most likely attributable to enhanced drainage in the upper watershed. The number of taxa increased with downstream sites, although composite scores were similar for all three stations.

Habitat - 1993

Habitat quality was rated poor (severely impaired) at Station 1a and good (slightly impaired) at Stations 2a and 3a (Table 3). Based on channel morphology and trunk diameters on trees growing along the stream banks, the stream channel in the vicinity of Station 1a was dredged 15 to 20 years ago. Stream channel characteristics at each survey site indicated that stream flow fluctuations are often extreme and unstable. Typical sources of stream quality degradation, such as upland and stream channel erosion, sedimentation, and extreme hydrologic fluctuations were evident throughout the Sand Creek watershed during this survey.

3. BIOLOGICAL SAMPLING RESULTS – 1996

Fish - 1996

Species diversity at Stations 1b and 2b was low and dominated primarily by central mudminnows, creek chubs (Semotilus atromaculatus), and johnny darters (Etheostoma

nigrum), all tolerant taxa (Tables 4A and B). Both stations lacked salmonids and other intolerant species, indicating that this portion of Sand Creek was not meeting its designation as a coldwater stream.

Macroinvertebrates - 1996

Macroinvertebrate community evaluations at Stations 1b and 2b were both rated poor (–5 and –6, respectively) and almost totally lacked sensitive mayfly, stonefly, and caddisfly taxa (Tables 5A and B). The taxa composition consisted largely of tolerant gastropods (snails), decapods (crayfish), isopods (sowbugs), and air-breathing hemipterans (true bugs). Most macroinvertebrates present were swimmers, skaters, or burrowers and are indicative of a high amount of fine sediments and a trend toward homogeneous substrate composition. The few clingers, which need larger particle size or other firm substrate to survive, found in the survey may be attributable to the presence of small gravel patches and a logiam at Station 2b.

Habitat - 1996

The aquatic habitat at both stations was rated as fair (moderately impaired) with scores of 52 and 51 for 1b and 2b, respectively (Table 6). Both surveys indicated a high degree of embeddedness and fine sediment deposition, which result in reduced habitat availability for macroinvertebrates and fish. Station 2b (Arthur Street) was rated as having a highly irregular flow pattern, moderately unstable banks, and low bank vegetative stability, all of which may be the direct result of periodic water withdrawal events immediately upstream.

The 1993 and 1996 surveys both show a higher level of degradation at upstream sites 1B (Cleveland Street) and 1A/2B (Arthur Street) on Sand Creek. The two downstream stations sampled in 1993 (Lincoln Street and M-45 crossings) both had higher scores in all three metric categories than the surveys at the Arthur Street (1993 and 1996) and Cleveland Street stations upstream. The combination of agricultural land use, periodic dewatering of the stream channel for irrigation, and historic channelization activity at the upstream sites (as noted by field personnel) have combined to reduce habitat for fish and aquatic macroinvertebrates. High levels of embeddedness and bottom deposition often result from improper agricultural uses and channelization processes. This increased sediment load combined with the channel/habitat homogeneity resulting from channelization results in a loss of mayfly, stonefly, and caddisfly taxa and a general shift in the macroinvertebrate community toward taxa more tolerant of fine sediments (Waters, 1995). Water diversion activities between sites 1B and 1A/2B have reportedly been occurring since 1982, prior to either of these surveys. As a result of LWMD actions, in 1998 the landowner responsible for the diversion was forced to place a weir in the stream channel so that baseflow conditions could be maintained downstream.

The downstream stations had a higher diversity of fish and macroinvertebrate taxa and a more heterogeneous and stable stream channel providing a variety of habitats for fish and insects. Mitigating factors at these stations may be the lack of historical channelization at these stations, as well as the additional flow from East Fork and other smaller tributaries to Sand Creek. Future survey activity should sample at historic sites in order to investigate whether the perpetuation of baseflow conditions enables Station 1A/2B to approach the conditions of the higher-quality downstream sites.

REFERENCES

- MDEQ. 1997. Qualitative biological and habitat survey protocols for wadable streams and rivers. GLEAS Procedure No. 51. Michigan Department of Environmental Quality, Surface Water Quality Division, Lansing, Michigan.
- Omernik, J.M. and A.L. Gallant. 1988. Ecoregions of the upper midwest states. United States Environmental Protection Agency, Environmental Research Laboratory, EPA/600/3-88/037.
- Waters, T.F. 1995. Sediment in streams: sources, biological effects, and control. American Fisheries Society Monograph 7.

Field Work By:

Scott Hanshue, Aquatic Biologist

Jack Wuycheck, Aquatic Biologist

Bill Taft, Aquatic Biologist

Great Lakes and Environmental Assessment Section

Surface Water Quality Division

Amy Hilt, Fisheries Division, MDNR

Report By:

Kevin Goodwin, Aquatic Biologist

Great Lakes and Environmental Assessment Section

Surface Water Quality Division

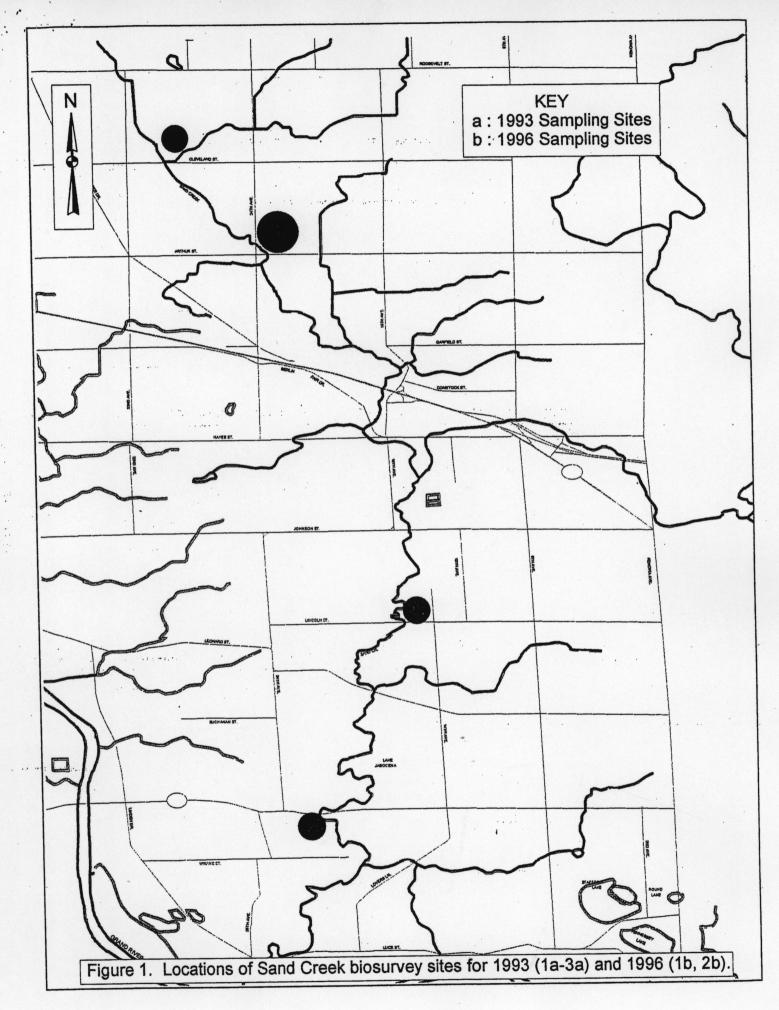


Table 1A. Qualitative fish sampling results for Sand Creek (Ottawa County, Michigan), a designated coldwater stream located in the S. Michigan/N. Indiana Till Plains ecoregion, August 26, 1993.

	STATION 1	STATION 2	STATION 3
TAXA	Arthur Rd.	Lincoln Rd.	d/s of M-45
Salmonidae (trouts)			
Oncorhynchus mykiss (Rainbow tr.)		2	. 6
Salmo trutta (Brown trout)		1	3
Jmbridae (mudminnows)			
Umbra limi (Central mudminnow)	66		4
Esocidae (pikes)			
Esox lucius (Northern Pike)		2	
Opprinidae (minnows and carps)			
Semotilus atromaculatus (Creek chub)	24	2	1
Notropis volucellus (Mimic sh.)			4
Pimephales notatus (Bluntnose m.)			2
Rhinichthys atratulus (Blacknose d.)			19
Cottidae (sculpins)			
Cottus bairdi (Mottled sculpin)		78	50
Catostomidae (suckers)			
Catostomus commersoni (W. sucker)		21	23
Moxostoma erythrurum (Golden redh.)			1
Gasterosteidae (sticklebacks)			
Culaea inconstans (Brook)	21		
Centrarchidae (sunfish)			· · · · · · · · · · · · · · · · · · ·
Ambioplites rupestris (Rock bass)			2
Lepomis cyanellus (Green sunfish)			2
Percidae (perch)			
Etheostoma caeruleum (Rainbow d.)			1
Etheostoma nigrum (Johnny darter)	2	26	8
TOTAL INDIVIDUALS	113	132	126
Number of hybrid sunfish	. 0	0	0
Number of anomalies	0	0	0
Percent anomalies	0	0	0
Percent allomaties Percent salmonids	0.000	0.023	0.071
Density	0.025	0.009	0.006
Gear	Backpack	Backpack	Backpack

Table 1B. Fish metric evaluation of Sand Creek, Ottawa County, Michigan, August 26, 1993.

	STATION 1	STATION 2	STATION 3
METRIC	Value	Value	Value
TOTAL NUMBER OF TAXA	4	7	14
NO. OF DARTER, SCULPIN, MADTOM TAXA	1	2	3
NUMBER OF SUNFISH TAXA	0	0	2
NUMBER OF SUCKER TAXA	0	1	2
NUMBER OF INTOLERANT TAXA	0	3	5
PERCENT TOLERANT	81.4	37.1	46.8
PERCENT OMNIVOROUS TAXA	79.6	17.4	38.9
PERCENT INSECTIVOROUS TAXA	20.4	78.8	52.4
PERCENT PISCIVOROUS TAXA	0.00	1.5	1.6
% SIMPLE LITHOPHILIC SPAWNER TAXA	0.00	. 15.9	34.9

Table 2A. Qualitative macroinvertebrate sampling results for Sand Creek (Ottawa County, Michigan) a coldwater designated stream located in the S. Michigan/N. Indiana Till Plains ecoregion, August 26, 1993.

A TOMANON STANCES

Service Services	STATION 1	STATION 2	STATION 3
TAXA	Arthur Rd.	Lincoln Rd.	d/s of M-45
PORIFERA (sponges)		8	
PLATYHELMINTHES (flatworms)			
Turbellaria	1		
ANNELIDA (segmented worms)			
Oligochaeta (worms)	1	3	1
ARTHROPODA			
Crustacea			
Amphipoda (scuds)		5	
Decapoda (crayfish)		15	8
Isopoda (sowbugs)	15	2	
Arachnoidea			
Hydracarina			1
Insecta			
Ephemeroptera (mayflies)			
Ephemeridae			2
Heptageniidae	8	5	5 2
Oligoneuriidae			2
Odonata			
Zygoptera (damselflies)			
Calopterygidae		. 5	5
Hemiptera (true bugs)			
Belostomatidae	1		
Corixidae	1	5	5
Gerridae	1	3	5
Mesoveliidae			5
Notonectidae			4
Megaloptera			
Corydalidae (dobson flies)			1 _ `
Sialidae (alder flies)	8		
Trichoptera (caddisflies)			
Hydropsychidae	5	5	5
Limnephilidae	5	8	5
Coleoptera (beetles)			
Dytiscidae (total)	1		1
Hydrophilidae (total)			1
Dryopidae		2	
Elmidae	5	2	5
Haliplidae (larvae)			. 5
Diptera (flies)			
Chironomidae	10	10*-	15
Simuliidae		8	8
Tabanidae		2	
Tipulidae			8
MOLLUSCA			
Gastropoda (snails)			
Ancylidae (limpets)		1	2
Lymnaeidae			1
Physidae		4	2
Pelecypoda (bivalves)			
Sphaeriidae (clams)	15	3	5
Oprideriidae (diame)			
TOTAL INDIVIDUALS	77	96	107
TOTAL MIDITIDO/ILO			

Table 2B. Macroinvertebrate metric evaluation of Sand Creek, Ottawa County, Michigan, August 26, 1993.

	STA	TION 1	STAT	ION 2	STA	TION 3
METRIC	Value	Score	Value	Score	Value	Score
TOTAL NUMBER OF TAXA	14	0	19	0	25	1
NUMBER OF MAYFLY TAXA	1	· ·-1		1	. 3	0
NUMBER OF CADDISFLY TAXA	2	0	2	. 0	2	0
NUMBER OF STONEFLY TAXA	0	-1	0	-1	0	-1
PERCENT MAYFLY COMP.	10.39	0	5.21	. 0	8.41	0
PERCENT CADDISFLY COMP.	12.99	0	13.54	0	9.35	0
PERCENT CONTR. DOM. TAXON	19.48	1	15.63	1	14.02	1
PERCENT ISOPOD, SNAIL, LEECH	19.48	-1	7.29	0	4.67	0
PERCENT SURF. AIR BREATHERS	5.19	1	8.33	0	19.63	-1
TOTAL SCORE		-1		-1		0
MACROINV. COMMUNITY CATEGO	RY	ACCEPT.	/	ACCEPT.		ACCEPT.

Table 3. Habitat evaluation for Sand Creek, Ottawa County, August 26, 1993.

HABITAT METRIC	STATION 1 Arthur Rd.	STATION 2 Lincoln Rd.	STATION 3 d/s of M-45
Bottom Substrate Avail. Cover (20):	3	15	20
Embeddedness (20):	5	15	10
Velocity:Depth (20):	2	16	16
Flow Stability (15):	8	12	11
Bottom Depos. (15):	1	11	11
Pools-Riffles- Runs-Bends (15):	0	· 15	. 15
Bank Stability (10):	0	6	5
Bank Vegetative Stability (10):		8	8
Stream Cover (10):	6	. 8	. 8
TOTAL SCORE (135)	28	106	104
HABITAT CONDITION CATEGORY	POOR (SEVERELY IMPAIRED)	GOOD (SLIGHTLY IMPAIRED)	GOOD (SLIGHTLY IMPAIRED)
Date: Stream Type: Weather: Ecoregion: Air Temperature: Water Temperature: Ave. Stream Width: Ave. Stream Depth: Surface Velocity: Estimated Flow: Stream Modifications: Nuisance Plants (Y/N): Basin Code: Report Number: COMMENTS:	August 26, 1993 Coldwater Sunny SMNITP 81 Deg. F. 67 Deg. F. 18 Feet 1 Feet 0.5 Ft./Sec. 9 CFS N 4050006 94/041	August 26, 1993 Coldwater Sunny SMNITP 78 Deg. F. 67 Deg. F. 35 Feet 1.5 Feet 0.5 Ft./Sec. 26.25 CFS N 4050006 94/041	August 26, 19 Coldwater Sunny SMNITP 75 66 50 2 1 100 N 4050006 94/04

Table 4A. Qualitative fish sampling results for Sand Creek, Ottawa County, September 16, 1996.

TAXA	STATION 1 Cleveland St.	STATION 2 Arthur St.	
Umbridae (mudminnows)			
Umbra limi (Central mudminnow)	50	22	
Esocidae (pikes)			
Esox americanus (Grass Pike)	5	3	
Cyprinidae (minnows and carps)			
Semotilus atromaculatus (Creek)	49	25	
Catostomidae (suckers)			
Catostomus commersoni (W. sucker)	12	1	
Gasterosteidae (sticklebacks)			
Culaea inconstans (Brook)		7	
Centrarchidae (sunfish)			
Lepomis cyanellus (Green sunfish)	16	7	
Lepomis macrochirus (Bluegill)	1	2	
Micropterus salmoides (Lm. bass)		1	
Percidae (perch)			
Etheostoma nigrum (Johnny darter)	24	29	
TOTAL INDIVIDUALS	157	97	
Number of hybrid sunfish	0	0	
Number of anomalies	0	0	
Percent anomalies	0.000	0.000	
Percent salmonids	. 0	0	
Density	0.039	0.012	
Gear	bps	bps .	

Table 4B. Fish metric evaluation of Sand Creek, Ottawa County, September 16, 1996.

	STATION 1	STATION 2
METRIC	Value	Value
TOTAL NUMBER OF TAXA	7	9
NO. OF DARTER, SCULPIN, MADTOM TAXA	1	1
NUMBER OF SUNFISH TAXA	2	2
NUMBER OF SUCKER TAXA	1	1
NUMBER OF INTOLERANT TAXA	0	0
PERCENT TOLERANT	96.2	86.6
PERCENT OMNIVOROUS TAXA	70.7	49.5
PERCENT INSECTIVOROUS TAXA	26.1	46.4
PERCENT PISCIVOROUS TAXA	3.2	4.1
% SIMPLE LITHOPHILIC SPAWNER TAXA	7.6	1.0

Table 5A. Qualitative macroinvertebrate sampling results for Sand Creek, Ottawa County, September 16, 1996.

TAXA	STATION 1 Cleveland St.	STATION 2 Arthur St.
ARTHROPODA		
Crustacea		
Decapoda (crayfish)	10	25
Isopoda (sowbugs)	20	20
Insecta		
Ephemeroptera (mayflies)	•••	
Heptageniidae		2
Odonata		
Zygoptera (damselflies)		
Calopterygidae		5
Hemiptera (true bugs)		
Belostomatidae	1	
Corixidae	5	
Gerridae	5	5
Notonectidae	5	5
Saldidae		5
Megaloptera		
Sialidae (alder flies)	16	
Coleoptera (beetles)		
Dytiscidae (total)		1
Diptera (flies)		
Chironomidae	8	5
Culicidae	1	
Tipulidae		. 1
MOLLUSCA		
Gastropoda (snails)		
Ancylidae (limpets)		
Lymnaeidae	18	
Physidae	15	10
Pelecypoda (bivalves)		
Sphaeriidae (clams)	15	15
TOTAL INDIVIDUALS	119	99

Table 5B. Macroinvertebrate metric evaluation of Sand Creek, Ottawa County, September 16, 1996.

	STATIC	ON 1	STATIC)N 2
METRIC	Value	Score	Value	Score
TOTAL NUMBER OF TAXA	12	0	12	0
NUMBER OF MAYFLY TAXA	0	-1	1	-1
NUMBER OF CADDISFLY TAXA	0	-1	0	-1
NUMBER OF STONEFLY TAXA	0	-1	0	-1
PERCENT MAYFLY COMP.	0.00	-1	2.02	-1
PERCENT CADDISFLY COMP.	0.00	-1	0.00	-1
PERCENT CONTR. DOM. TAXON	16.81	1	25.25	0
PERCENT ISOPOD, SNAIL, LEECH	44.54	-1	30.30	-1
PERCENT SURF. AIR BREATHER		0	16.16	0
TOTAL SCORE		-5		-6
MACROINV. COMMUNITY CATEG	ORY	POOR		POOR

Table 6. Habitat evaluation for Sand Creek, Ottawa County, September 16, 1996.

The state of the s

HABITAT METRIC	STATION 1 Cleveland St.	STATION 2 Arthur St.
Bottom Substrate Avail. Cover (20):	3	10
Embeddedness (20):	5	5
Velocity:Depth (20):	6	11
Flow Stability (15):	8	
Bottom Depos. (15):	3	3
Pools-Riffles- Runs-Bends (15):	3	
Bank Stability (10):	8	5
Bank Vegetative Stability (10):	9	4
Stream Cover (10):	7	8
TOTAL SCORE (135)	52	51
HABITAT CONDITION CATEGORY	FAIR (MODERATELY IMPAIRED)	FAIR (MODERATELY IMPAIRED)
Date: Stream Type: Weather: Ecoregion: Air Temperature: Water Temperature: Ave. Stream Width: Ave. Stream Depth: Surface Velocity: Estimated Flow: Stream Modifications: Nuisance Plants (Y/N): Basin Code: Report Number: COMMENTS:	9/16/96 Coldwater Sunny SMNITP 56 Deg. F. 52 Deg. F. 9 Feet 0.3 Feet 0.75 Ft./Sec. 2.03 CFS N 4050006	9/16/96 Coldwater Sunny SMNITP 56 Deg. F. 64 Deg. F. 13 Feet 0.6 Feet 0.75 Ft./Sec. 5.85 CFS N 4050006

Table 7. Summary of the fish and macroinvertebrate community and aquatic habitat evaluations for Sand Creek, Southern Michigan/Northern Indiana Till Plains Ecoregions, August 1993 and September 1996.

Station	Station	Macroinverte	brate C	ommun	ity	Habitat	Evaluation	
Number	Location/Year	Rating		Score		Rating	Score	
SC96-01 (2a)	Cleveland Street/ 1996	Poor	4	-5		Fair	52	
SC93-01 (1a)	Arthur Street/ 1993	Acceptable		-1		Poor	28	
SC96-02 (2b)	Arthur Street/ 1996	Poor		-6	,	Fair	51	
SC93-02 (1b)	Lincoln Street/ 1993	Acceptable		-1		Good	106	
SC93-03 (1c)	M-45/ 1993	Acceptable		-1		Good	104	

APPENDIX B ROAD/STREAM CROSSINGS INVENTORY

Sand Creek, Ottawa County

Watershed Summary, 2002

By: Ryan Grant, MDEQ

Lower Sub-Watershed

Summary

The majority of this section of Sand Creek flows through Aman Park, which allows the area to remain relatively natural. The main contributor to degradation along this stretch would be the MDOT project occurring on M45. Although it is evident that Best Management Practices were incorporated into the project, erosion pathways were still evident and large areas of disturbed land were left un-vegetated. Other potential problems that exist, which could also exist throughout the entire watershed are failing residential septic tanks.

General Comments Indicated on Field Sheets

- LSC-1, MDOT barrels in the water downstream. Landowner's road being installed on right upstream side with high degree of potential for runoff.
- LSC-3, Downstream the old oil lines crossing the stream should be removed.
- LSC-5, Ongoing construction and loose soil on upstream side.
- LSC-6, Downstream flow is using west road ditch.

Mid-Lower Sub-Watershed

Summary

This portion of Sand Creek flows through a rural, wooded, residential area south of Marne. Problems noted in this section included a large gully formed by road runoff located on the main branch at the Leonard crossing. Other problems include resident waterfront owners not buffering the stream from their maintained lawns. At MLSC-4, a potential contamination problem exists due to containment tanks located adjacent to the stream.

General Comments Indicated on Field Sheets

 MLSC-1, Upstream water flowing in on right hand side is fast moving and green.

- MLSC-4, Upstream to right, containment tanks with dirt containment barrier. Has pipe that dips into cut 55-gallon barrel in ditch / looks oily.
- The rest of the comments indicated that the sites looked relatively good.

Mid-Upper Sub-Watershed

Summary

The land-use in the northern half of this sub-watershed is primarily agricultural and the southern half is residential to urban. Tributaries in this sub-watershed had very little water in them or were dry, but there was evidence of high channel forming flows. An unknown tile discharging nutrient rich water was observed at site MUSC-7. Bank erosion due to animal access was observed at two sites MUSC-8 and MUSC-13. Runoff from the roads, in downtown Marne, drain directly to Sand Creek. Drainage pipes were observed at MUSC-4 along with a substantial gully, which was formed due to road runoff. Runoff from dirt / gravel parking lots adjacent to the stream at MUSC-1 looked to have an impact on the creek.

General Comments Indicated on Field Sheets

- **MUSC-1**, Boat storage both sides with runoff from parking lots.
- MUSC-2, Maintained lawns both sides, water low and stagnant.
- MUSC-6, Hard to find, gravel pit on upstream side.
- **MUSC-8**, The culvert to the north contains stagnant water. Downstream, there is an unknown water pipe source.
- MUSC-14, Culvert to upstream side eroded on both sides of culvert.
- The rest of the comments stated that the sites were relatively good.

Upper Sub-Watershed

Summary

The land use within the upper sub-watershed of Sand Creek consists of mainly agricultural fields (corn and soybean) and orchards. Much of the channels are delegated as county drains and are maintained. Although the surveys were conducted during base flow, it was evident that high flow levels are common during rain events. The culverts are set up for extreme volumes of water in that, some sites had three large diameter culverts at the crossing. Much

of the roads in the sub-watershed were gravel and there was evidence that sediment from the roads were entering the stream at the crossings. One particular site USC-7, there is no preventative measures taken to prohibit road runoff above the new box culvert. Stream bank erosion due to animal access was noticed at USC-8 (Janice Tompkins talked with property owner). Nutrient input from surrounding agricultural fields were impacting USC-13. Excessive amounts of algae were observed along the edges, on the substrate, and throughout the water column of the stream. Sites USC-17 and 18 were heavily impacted by road runoff and orchard access areas.

General Comments Indicated on Field Sheets

- USC-1, An intensive horse operation is located on the south side of Cleveland, east side of the creek. Manure was notice near the creek. The road ditch is very deep allowing extensive erosion on southwest side.
- **USC-3**, Garbage observed downstream, on the left side. Cropland needs horizontal tilling. The culvert is undercut.
- USC-4, Tiles from surrounding fields drain directly into he stream on both sides.
- USC-11, The Culvert is over 1/3 filled with sediment. Considerable erosion on hillside coming down the road to stream (Upstream, left side).
 Sediment from the road enters the stream.
- **USC-12**, Downstream crop fields need larger buffer zones. One of two culverts dry and ½ full of sand.
- USC-13, Upstream crop fields need larger buffer zones. Two of three culverts filled in with sediment, on both sides.
- USC-14, Downstream crop fields, on the left side need larger buffer zones.
- **USC-15**, Sheep pasture adjacent to upstream side. The sheep are allowed to drink from the creek at a 5 ft wide spot.
- **USC-16**, Road runoff directly into stream.
- **USC-18**, Upstream, pipe from adjacent field drains directly into stream (foamy water). Film on water but did not look like oil or bacteria.

• **USC-19**, White 8" pipe draining directly into the upstream side of the stream.

East Fork Sub-Watershed

Summary

The landuse characteristics in this sub-watershed range from agricultural / orchard in the northern reaches, rural residential to slightly urban in the midsection and rural residential to mostly forested in the lower reaches. Observed problems affecting the watershed include hydrology issues, agricultural runoff, and possible septic system contamination. Extensive channel erosion caused by high volumes of runoff were noticed at EFSC-5, 6, 10, and 19. Agricultural runoff was greater in the Lau Bach Inter-County Drain region of the sub-watershed, evidence being the high amount of vegetative matter at EFSC-15. A possible septic contamination was noticed by Janice Tompkins at EFSC-14 on 10/16/2002 while conducting surveys with Howard Miller Volunteers. Along with the channel erosion at site EFSC-10, deep gullies from road runoff and residential runoff indicate degrading sources.

General Comments Indicated on Field Sheets

- EFSC-1, Installation of sewer main line at crossing causing potential source issues.
- **EFSC-2**, Residential maintained lawn on left upstream side. Potential highway (I96) runoff on left downstream side.
- **EFSC-3**, No geo-textile material placed to hold roadside vegetation after restoration following pipeline (gas) construction.
- **EFSC-6**, Upstream side culvert is deteriorated (rusted out) at the bottom.
- **EFSC-12**, Septic system (raised) next to dry streambed.
- **EFSC-13**, Significant aquatic plant growth, upstream.
- **EFSC-14**, Grey water noticed, possible septic system failure.
- EFSC-15, Good riparian buffers downstream, but high nutrient loading.
- **EFSC-19**, Holes at the top of the culvert.
- EFSC-20, Loose soil around both culverts.

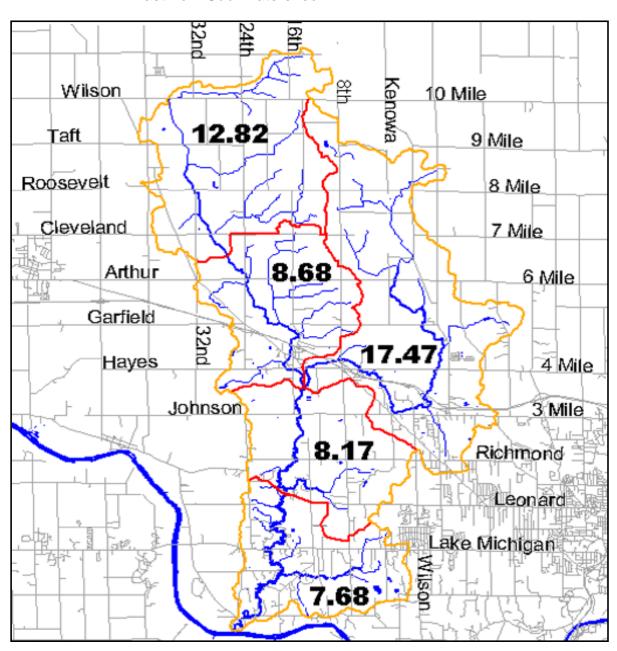
Sand Creek Sub-Watershed Breakdown

Yellow Line = Sand Creek Watershed Boundary

Red Line = Sub-Watershed Boundary

Blue Line = River, Stream, and Drain Channels

Note, Numbers represent square miles


7.68 - Lower Sand Creek Sub-Watershed

8.17 - Mid-Lower Sand Creek Sub-Watershed

8.68 - Mid-Upper Sand Creek Sub-Watershed

12.82 - Upper Sand Creek Sub-Watershed

17.47 - East Fork Sub-Watershed

Road / Stream Crossing Inventory for Sand Creek 2002

Count	Site ID	Sub-Watershed Name	Location	Township/County	Stream Name	Inventory Date
1	LSC-1	Lower Sand Creek	Luce west of 20th	Tallmadge / Ottawa	Sand Creek	10/16/2002
2	LSC-2	Lower Sand Creek	Lovers Lane southwest of 14th	Tallmadge / Ottawa	Trib to Sand Creek	10/16/2002
3	LSC-3	Lower Sand Creek	M45 west of 14th	Tallmadge / Ottawa	Trib to Sand Creek	10/16/2002
4	LSC-4	Lower Sand Creek	M45 west of 14th	Tallmadge / Ottawa	Sand Creek	10/16/2002
5	LSC-5	Lower Sand Creek	M45 east of 8th	Tallmadge / Ottawa	Trib to Sand Creek	10/16/2002
6	LSC-6	Lower Sand Creek	8th south of M45	Tallmadge / Ottawa	Trib to Sand Creek	10/16/2002
7	LSC-7	Lower Sand Creek	8th north of Luce	Tallmadge / Ottawa	Trib to Sand Creek	10/16/2002
8	MLSC-1	Mid-Lower Sand Creek	Johnson east of 12th	Tallmadge / Ottawa	Sand Creek	10/16/2002
9	MLSC-2	Mid-Lower Sand Creek	Lincoln east of 12th	Tallmadge / Ottawa	Sand Creek	10/16/2002
10	MLSC-3	Mid-Lower Sand Creek	Leonard west of 14th	Tallmadge / Ottawa	Sand Creek	10/16/2002
11	MLSC-4	Mid-Lower Sand Creek	14th north of Leonard	Tallmadge / Ottawa	Trib to Sand Creek	10/16/2002
12	MLSC-5	Mid-Lower Sand Creek	Leonard east of 14th	Tallmadge / Ottawa	Trib to Sand Creek	10/16/2002
13	MLSC-6	Mid-Lower Sand Creek	8th south of Lincoln	Tallmadge / Ottawa	Trib to Sand Creek	10/16/2002
14	MUSC-1	Mid-Upper Sand Creek	16th south of Hayes	Tallmadge / Ottawa	Sand Creek	10/16/2002
15	MUSC-2	Mid-Upper Sand Creek	Hayes west of 16th	Wright / Ottawa	Trib to Sand Creek	10/16/2002
16	MUSC-3	Mid-Upper Sand Creek	Berlin Fair north of Hayes	Wright / Ottawa	Sand Creek	10/16/2002
17	MUSC-4	Mid-Upper Sand Creek	State east of 16th	Wright / Ottawa	Sand Creek	10/16/2002
18	MUSC-5	Mid-Upper Sand Creek	16th south of Garfield	Wright / Ottawa	Trib to Sand Creek	10/8/2002
19	MUSC-6	Mid-Upper Sand Creek	8th south of Garfield	Wright / Ottawa	Trib to Sand Creek	10/8/2002
20	MUSC-7	Mid-Upper Sand Creek	8th north of Garfield	Wright / Ottawa	Trib to Sand Creek	10/8/2002
21	MUSC-8	Mid-Upper Sand Creek	16th north of Garfield	Wright / Ottawa	Trib to Sand Creek	10/8/2002
22	MUSC-9	Mid-Upper Sand Creek	16th south of Arthur	Wright / Ottawa	Trib to Sand Creek	10/8/2002
23	MUSC-10	Mid-Upper Sand Creek	16th north of Arthur	Wright / Ottawa	Trib to Sand Creek	10/8/2002
24	MUSC-11	Mid-Upper Sand Creek	16th south of Cleveland	Wright / Ottawa	Trib to Sand Creek	10/8/2002
25	MUSC-12	Mid-Upper Sand Creek	Arthur west of 16th	Wright / Ottawa	Trib to Sand Creek	10/8/2002
26	MUSC-13	Mid-Upper Sand Creek	Juniper southeast of Arthur	Wright / Ottawa	Trib to Sand Creek	10/8/2002
27	MUSC-14	Mid-Upper Sand Creek	24th south of Arthur	Wright / Ottawa	Trib to Sand Creek	10/8/2002
28	MUSC-15	Mid-Upper Sand Creek	Arthur east of 24th	Wright / Ottawa	Sand Creek	10/8/2002
29	USC-1	Upper Sand Creek	Cleveland west of 24th	Wright / Ottawa	Sand Creek	10/16/2002
30	USC-2	Upper Sand Creek	24th north of Cleveland	Wright / Ottawa	Kauf Drain	10/16/2002
31	USC-3	Upper Sand Creek	Roosevelt east of 24th	Wright / Ottawa	Trib to Sand Creek	10/16/2002
32	USC-4	Upper Sand Creek	16th north of Cleveland	Wright / Ottawa	Kauf Drain	10/16/2002
33	USC-5	Upper Sand Creek	Roosevelt west of 14th	Wright / Ottawa	Kauf Drain	10/16/2002
34	USC-6	Upper Sand Creek	32nd north of Cleveland	Wright / Ottawa	Trib to Sand Creek	10/16/2002
35	USC-7	Upper Sand Creek	Roosevelt west of 32nd	Wright / Ottawa	Sand Creek	10/16/2002

Road / Stream Crossing Inventory for Sand Creek 2002

Count	Site ID	Sub-Watershed Name	Location	Township/County	Stream Name	Inventory Date
36	USC-8	Upper Sand Creek	28th north of Roosevelt	Wright / Ottawa	Trib to Sand Creek	10/16/2002
37	USC-9	Upper Sand Creek	24th north of Roosevelt	Wright / Ottawa	Trib to Sand Creek	N/A
38	USC-10	Upper Sand Creek	20th south of Taft	Wright / Ottawa	Trib to Sand Creek	10/16/2002
39	USC-11	Upper Sand Creek	Berry east of 20th	Chester / Ottawa	Trib to Sand Creek	10/16/2002
40	USC-12	Upper Sand Creek	Taft west of 30th	Chester / Ottawa	Sand Creek	10/8/2002
41	USC-13	Upper Sand Creek	Wilson west of 32nd	Chester / Ottawa	Sand Creek	10/8/2002
42	USC-14	Upper Sand Creek	32nd north of Wilson	Chester / Ottawa	Sand Creek	10/8/2002
43	USC-15	Upper Sand Creek	Wilson west of 24th	Chester / Ottawa	Sand Creek	10/8/2002
44	USC-16	Upper Sand Creek	24th north of Wilson	Chester / Ottawa	Sand Creek	10/8/2002
45	USC-17	Upper Sand Creek	16th south of Harding	Chester / Ottawa	Trib to Sand Creek	10/8/2002
46	USC-18	Upper Sand Creek	16th south of Harding	Chester / Ottawa	Trib to Sand Creek	10/8/2002
47	USC-19	Upper Sand Creek	16th south of Harding	Chester / Ottawa	Trib to Sand Creek	10/8/2002
48	EFSC-1	East Fork Sand Creek	Hayes east of 16th	Wright / Ottawa	East Fork	10/16/2002
49	EFSC-2	East Fork Sand Creek	8th north of 4 Mile	Wright / Ottawa	East Fork	10/8/2002
50	EFSC-3	East Fork Sand Creek	8th north of 4 Mile	Wright / Ottawa	Trib to East Fork	10/8/2002
51	EFSC-4	East Fork Sand Creek	4 Mile east of 8th	Wright / Ottawa	East Fork	10/8/2002
52	EFSC-5	East Fork Sand Creek	3 Mile west of Kinney	City of Walker / Kent	Trib to East Fork	10/8/2002
53	EFSC-6	East Fork Sand Creek	Kinney south of 3 Mile	City of Walker / Kent	Trib to East Fork	10/16/2002
54	EFSC-7	East Fork Sand Creek	4 Mile west of Fruit Ridge	Alpine / Kent	East Fork	10/8/2002
55	EFSC-8	East Fork Sand Creek	Fruit Ridge south of 5 Mile	Alpine / Kent	Trib to East Fork	10/8/2002
56	EFSC-9	East Fork Sand Creek	Hendershot south of 6 Mile	Alpine / Kent	Trib to East Fork	10/8/2002
57	EFSC-10	East Fork Sand Creek	Peach Ridge south of 6 Mile	Alpine / Kent	Trib to East Fork	10/8/2002
58	EFSC-11	East Fork Sand Creek	5 Mile west of Fruit Ridge	Alpine / Kent	East Fork	N/A
59	EFSC-12	East Fork Sand Creek	6 Mile west of Stage	Alpine / Kent	Trib to East Fork	10/8/2002
60	EFSC-13	East Fork Sand Creek	6 Mile east of Kenowa	Alpine / Kent	Laubach Inter-County Drain	10/8/2002
61	EFSC-14	East Fork Sand Creek	Kenowa north of 6 Mile	Alpine / Kent	Trib to Laubach Inter-County Drain	10/16/2002
62	EFSC-15	East Fork Sand Creek	Stage and Gibbs	Alpine / Kent	Laubach Inter-County Drain	10/16/2002
63	EFSC-16	East Fork Sand Creek	Hayes west of Stage	Alpine / Kent	Laubach Inter-County Drain	10/16/2002
64	EFSC-17	East Fork Sand Creek	8th north of Dickinson	Wright / Ottawa	Trib to Laubach Inter-County Drain	10/16/2002
65	EFSC-18	East Fork Sand Creek	Roosevelt east of 8th	Wright / Ottawa	Trib to Laubach Inter-County Drain	10/16/2002
66	EFSC-19	East Fork Sand Creek	8 Mile west of Fruit Ridge	Alpine / Kent	Trib to Laubach Inter-County Drain	10/16/2002
67	EFSC-20	East Fork Sand Creek	Fruit Ridge north of 8 Mile	Alpine / Kent	Trib to Laubach Inter-County Drain	10/16/2002

APPENDIX C PHYSICAL INVENTORY OF SAND CREEK

Section	Sub- section	Description of Site	Recommendations	Location
St. crossing		This stream section had a large amount of sediment in the streambed. When talking with farmer he indicated that he dredged creek periodically to increase its storage capacity. To note, debris was found in overhanging tree branches up to 2 ft. above the water level.	Reduce volume of agricultural runoff through wetland restoration. Reduce sedimentation through establishment of adequate buffer/filter strips and agricultural BMPs to reduce crop field erosion (e.g. no till). Discourage dredging through farmer workshop.	Headwaters to Roosevelt St. crossing
sevelt		Crops were grown in floodplain allowing only a small buffer width.	Plant adequate buffer/filter strips along streambanks.	Headwaters to Roosevelt St. crossing
to Roos	None	Residential lawn is mowed up to streambanks creating an insufficient buffer width.	Plant adequate buffer strip. Schedule riparian owner workshop incorporating landscaping for water quality.	Lawn and pasture are located on Roosevelt St. just west of Sand Creek
vnstream	Z	Fenced cow pasture adjacent to insufficient stream buffer. Manure inputs suspected.	Relocate cow pasture an adequate distance from creek. Plant adequate buffer/filter strips along streambanks.	See above
waters dov		Project Manager witnessed ORV being taken into creek. After ORV became stuck on streambank, users struggled to force ORV into the creek for 15+ minutes tearing up streambank and contributing sediment to creek.	Riparian owner workshop on use of ORVs.	West streambank located on Roosevelt St. just west of Sand Creek near west streambank
Неаф		Gravel access road located next to creek may contribute sediment.	Put in porous pavement along access drive.	Access road located on Roosevelt St. just west of Sand Creek
		Several eroded banks noted throughout stream section.	Consider streambank stabilization, wetland restoration, and adequate buffer/filter strips to address erosion and hydrology issues. Schedule farmer workshop.	43° 5' 19.32" N 85° 52' 6.24" W
ing				40 ft. downstream of 43° 5' 14.28" N 85° 52' 0.48" W
ross				43° 5' 13.56" N 85° 52' 0.84" W
St. c		Large pile of logs, cement blocks, and aluminum siding are obstructing flow.	Remove obstruction.	43° 5' 14.28" N 85° 52' 0.48" W
veland		Metal debris found on west streambank.	Remove metal debris.	20 ft. downstream from 43° 5' 5.28" N 85° 52' 0.48" W
o Cle		Oil sheen noted. Oil most likely originated from 32nd Ave. or upstream.	Address management of road runoff with Ottawa County Road Commission.	43° 4' 57.00" N 85° 51' 56.87" W
vnstream t	None	Stream buffer is not wide enough to filter agricultural runoff from adjacent corn fields. Where corn field is planted up to streambank, runoff is suspected of running directly to creek and contributing fertilizer.	Plant adequate buffer/filter strips along streambanks.	Within 150 ft. downstream of culvert located at 17206 32nd Ave.
ing dov		Drainage pipe, with a small steady flow, is contributing what looks like rust residue to the creek.	Consider replacing drainage pipe.	350 - 500 ft. downstream from culvert located at
Roosevelt St. cross		Rill erosion, due to runoff from corn fields, is suspected of contributing sediment to creek. Insufficient stream buffer noted.	Place rip rap in path of agricultural runoff. Consider sufficient buffer/filter strips and wetland restoration to reduce the volume of storm water runoff.	17206 32nd Ave.
		Landowner installed rip rap, but did not succeed in preventing erosion of steep bank. Hay fields are adjacent to creek. Severe bend erosion noted. Crop fields adjacent to creek.	Consider streambank stabilization, wetland restoration, and adequate buffer/filter strips to address erosion and hydrology issues. Schedule farmer workshop.	43° 4' 46.56" N 85° 51' 58.31" W
		Rill erosion due to runoff from corn fields is contributing sediment to creek.	Place rip rap in path of agricultural runoff. Consider sufficient buffer/filter strips and wetland restoration to reduce the volume of storm water runoff.	500-850 ft. downstream of 43° 4' 46.56" N 85° 51' 58.31" W

Summary		and Creek Physical Inventory				
Section	Sub- section	Description of Site	Recommendations	Location		
wnstream to	None	Stream undercutting and eroded banks noted at several locations throughout the stream section.	Consider streambank stabilization, wetland restoration, and adequate buffer/filter strips to address erosion and hydrology issues. Schedule farmer workshop.	Throughout stream section		
crossing downstream ur St. crossing		Fenced horse pastures are within 10-15 ft. of creek, one of which allows horse access to creek. Manure noted 5 ft. from creek on horse trail skirting creek.	Relocate horse pastures and trail a sufficient distance from creek. Plant adequate buffer/filter strips. Completely fence 3rd horse pasture to prevent access to the creek.	Pasture is 600 - 900 ft. downstream of Cleveland St. crossing		
St. Arth		Water pump expelling water into water retention area covered in algae.	Address nutrient runoff from crop fields by planting an adequate buffer/filter strip around water retention area.	43° 4' 4.80" N 85° 51' 17.63" W		
Cleveland		Approx. 100 ft. long, 7 ft. high streambank is severely eroded with approx. 0° slope. Bank sediment can be found on streambed. Potential tree falls were evident.	Consider streambank stabilization, wetland restoration, and adequate buffer/filter strips to address erosion and hydrology issues. Schedule farmer workshop.	East streambank is approx. 1000 ft. downstream from 43° 4' 4.80" N 85° 51' 17.63" W		
	crossing	Farmer takes tractor through creek at three locations. Streambank is severely degraded.	Construct bridges allowing tractor access to agricultural fields.	43° 2' 31.56" N 85° 49' 35.40" W		
	eld St. south to Ironwood Dr.	Stretch of a steep streambank is eroding. Rip rap and silt fence placed by riparian owners downstream.	Consider streambank stabilization, wetland restoration, and adequate buffer/filter strips to address erosion and hydrology issues. Schedule farmer workshop.	Downstream of 43° 2' 31.56" N 85° 49' 35.40" W		
ss St. crossing		ORV track in forested area behind residential home may contribute sediment to the creek.	Riparian owner workshop on use of ORVs.	Track is most likely behind residential house located at 15145 16th Ave.		
		Several residential lawns along 16th Ave. are mowed up to streambank resulting in a reduction of stream cover. To note, banks are not bare but vegetated with grass.	Plant adequate buffer strip. Schedule riparian owner workshop incorporating landscaping for water quality.	Residential lawns along 16th Ave. upstream from Ironwood Dr. crossing		
outh to Hayes		Tall, steep bank is eroded. Recent tree fall has contributed to streambank erosion.	Consider streambank stabilization, wetland restoration, and adequate buffer/filter strips to address erosion and hydrology issues. Schedule farmer workshop.	Streambank is near residencies along 16th Ave. upstream from Ironwood Dr. crossing		
Garfield St. so	r. crossing to State St. sing	Approx. 300 ft. of streambank is mowed by riparian owner resulting in reduction of stream cover. To note, banks are not bare but vegetated with grass.	landscaping for water quality	Lawn located on east streambank downstream of Ironwood Dr. and upstream of 43° 2' 14.28" N 85° 49' 46.56" W		
	Ironwood Dr. downstream to crossii	ORV tracks indicate that riparian owner takes ORV into the creek. Impacted streambank has deteriorated.	Riparian owner workshop on proper use of ORVs.	43° 2′ 14.28" N 85° 49′ 46.56" W		
		Discharge from a large concrete drainage pipe has severely eroded streambank despite the concrete slabs placed in the path of discharge.	Work with Ottawa County Road Commission to place and fan out rock rip rap to reduce discharge velocity and erosion.	Approx. 400 ft. upstream from State St. crossing		

Section	Sub- section	Description of Site	Recommendations	Location
crossing	ream to Hayes St.	Severe bank erosion (small area) due to runoff from parking lot. Trash is carried to creek via runoff.	Place and fan out rock rip rap in the path of flow to capture sediment and reduce surface flow velocity. Pick up parking lot trash regularly.	Parking lot is behind River City Benefit Designs located at 14637 16th Ave., Marne
south to Hayes St. cro cont'd		Trash receptacle located on gravel parking lot is overflowing contributing trash to creek. Birds were picking through trash frequently. Gravel from lot is suspected of washing into creek.	Empty trash receptacle regularly. Install porous pavement.	Gravel parking lot/ trash receptacle is across the street from the Interurban Depot Café located at 1580 Arch Street, Marne
	g downstream crossing	Approx. 250 ft. of streambank is mowed by riparian owner.	Plant adequate buffer strip. Schedule riparian owner workshop incorporating landscaping for water quality.	Streambank located near 16th Ave. and is upstream of the Berlin Fair Dr. crossing
St.	crossing	Riparian owner piles grass clippings 30 ft. from the creek contributing nutrients to the creek	Riparian owner workshop on proper yard waste disposal.	Yard waste located upstream of Berlin Fair Dr. crossing
Garfield	State St.	Large drainage pipe, carrying runoff from Berlin Fair Drive, discharges to forested area adjacent to creek. Discharge scours the forest floor and has eroded the streambank in two locations upstream of Hayes St.	Work with Ottawa County Road Commission to place and fan out rock rip rap to reduce discharge velocity and erosion.	Drainage pipe is located at Berlin Fair Dr. crossing, west of Berlin Fair Dr. and north of Sand Creek
	tream to	Approx. 150 ft. of streambank is mowed by riparian owner resulting in <25% stream cover. To note, banks are not bare but vegetated with grass.	Plant adequate buffer strip. Schedule riparian owner workshop incorporating landscaping for water quality.	Lawn is located on the west bank between Hayes St. and 16th Ave. crossings
ossing	Hayes St. crossing downstream 16th Ave. crossing	Oil sheen noted downstream of previous site. Most likely oil runoff originated from Hayes St. or upstream.	Address storm water management with Ottawa County Road Commission.	Oil most likely originated from Hayes St or northern roadway
to Johnson St. cros		Storm water runoff, from uphill residential area, runs into the creek at two locations, one of which leads to a large algae pool. Potential fertilizer runoff from residential area is suspect.	I Fartilizar managament. Plant adaguata huttar etrine	Residential lawns located north of creek between Hayes St .and 16th Ave. crossings
		Algae and numerous pieces of trash were found in creek and were being retained by a minor log pile. Trash was most likely from passersby on 16th Avenue and possibly from boat lot owned by Camp and Cruise.		Trash from 16th Avenue and boat lot owned by Camp and Cruise
downstrean	ing downstream to St. crossing	Several tires were seen here. To note, tires were frequently seen throughout the entire main branch of the Sand Creek.	A stream cleanup to help remove trash, including the numerous tires found throughout the creek.	Downstream of 16th Ave. crossing behind boat lot. Lot owned by Camp and Cruise located at 1613 Hayes.
Hayes St. crossing d		Road runoff, directed by turnout off of Hayes St., has led to rill erosion through the adjacent forest. Runoff has eroded the streambank and contributed sediment to the creek. (Silt fencing, placed at turnout due to nearby construction of utility building was retaining a large amount of sediment.)	Widen and fan out rock rip rap to capture more sediment and reduce surface flow velocity. Implement soil erosion and sediment control (SESC) plans during future construction projects.	Turnout is located on south side of Hayes St. next to boat lot owned by Camp Cruise
	ve. crossing Johnson St. (Camp and Cruise has an unpaved boat lot located on Hayes St. adjacent to stream buffer. Sediment inputs are suspected.		Boat lot, owned by Camp and Cruise, is located on the south side of Hayes St.
	16th Ave	Fenced area containing pet farm animals (i.e. Ilama and sheep) was within 60 feet of the streambank. A large nearby structure indicates that additional animals are housed here. Manure runoff suspected.	Relocate fenced area a sufficient distance from creek. Plant adequate buffer strip. Implement manure management.	Property located on 16th Ave., south of 1400 16th Avenue and upstream of Johnson St. crossing

Section	Sub- section	Description of Site	Recommendations	Location	
Hayes St. crossing downstream to Johnson St. crossing cont'd	crossii to Joh ng conf	Runoff from 16th Ave. has eroded streambank at two separate locations.	Address storm water management with Ottawa County Road Commission.	Streambanks are located downstream of 1400 16th Avenue and upstream of Johnson St. crossing	
		2 t b	Approx. 100 ft. of streambank is mowed by riparian owner resulting in <50% stream cover.	Plant adequate buffer strip. Schedule a riparian owner workshop incorporating landscaping for water quality.	Residential lawn is located on 16th Avenue,
		Riparian owner, mentioned above, has used concrete slabs to stabilize streambank resulting in a failed attempt as bank is undercut.	Consider streambank stabilization, wetland restoration, and adequate buffer/filter strips to address erosion and hydrology issues.	south of 1400 16th Avenue and upstream of Johnson St. crossing	
		Three oil sheens were seen on exposed streambed through this stream section. Source of oil may have originated from Johnson St. or upstream.	Address storm water management with Ottawa County Road Commission.	Johnson St. or other northern roadway	
n St. crossing		Probable manure inputs from a fenced 450 sq. ft. area housing at least 25 animals (i.e. deer, goats, swans, and cows). Watering pond is covered in Duckweed and overflows into creek at three locations. One of the locations is within 3 ft. of the creek.	Plant adequate buffer strip. Implement manure management.	Property is located at 0-13101 14th Ave.	
Lincoln		Failed concrete dam.	Remove failed dam.	Property is located at 0-13101 14th Ave.	
tream to	None	Riparian owner mows up to streambank.	Plant adequate buffer strip. Schedule riparian owner workshop incorporating landscaping for water quality.	Property is located at 0-13101 14th Ave.	
ng downstr		Cow pasture adjacent to creek. Manure runoff suspected. To note, creek does have a narrow buffer strip.	Plant sufficient buffer/filter strip. If not implemented already, consider manure management.	Pasture is adjacent to residency located at 0-13101 14th Ave.	
St. crossing		Residential lawn is mowed to streambank. To note, resident has placed shed directly on streambank 10-15 ft. from water's edge.	Plant adequate buffer strip. Schedule riparian owner workshop incorporating landscaping for water quality.	Property is located at or by 1519 Lincoln St.	
Johnson (Flow from drain pipe on residential lot has cut a 2-3 foot wide rill and eroded bank.	Place and fan out more rock rip rap to capture more sediment and reduce surface flow velocity.		
Lincoln St. crossing downstream to Leonard St. crossing		Drainage pipe from the nearby paved lot carries trash into creek and has eroded the streambank.	Issurface flow volceity. Plant adequate buffer strip	Drainage pipe located near the parking lot owned by Bolthouse Brothers Growers on Bolthouse Dr. PVT.	
	None	Approx. a 5" by 3.5" sediment pile near west bank. Suspect storm water runoff from Lincoln St. road ditch of streambank erosion.	Work with Ottawa County Road Commission to place and fan out rock rip rap to reduce discharge velocity and erosion.	Just downstream of Lincoln St. crossing	
		None	Riparian owner mows up to streambank.	Plant adequate buffer strip. Schedule riparian owner workshop incorporating landscaping for water quality.	Property located at 0-1608 Lincoln St.
Linc		Flow from drainage pipe on residential lot has eroded bank.	Place and fan out more rock rip rap to capture more sediment and reduce surface flow velocity.	1. Topony todatod at o Todo Emidem of.	

Section	Sub- section	Description of Site	Recommendations	Location
crossing	None	Riparian owner disposes of yard waste on a 10" x 13" area directly on streambank contributing nutrients to creek. (Owner has placed shed <10 ft. from water's edge.)	Riparian owner workshop on proper yard waste disposal.	Property located at 0-1608 Lincoln St.
nard St. c		Approx. 50 ft. of streambank is mowed by riparian owner resulting in <50% stream cover. To note, banks are not bare but vegetated with grass.	Plant adequate buffer strip. Schedule riparian owner workshop incorporating landscaping for water quality.	
to Leoi		Approx. 3" x 2" area of streambank is eroded due to boat launches by riparian owner.	Put in porous pavement.	Brick house just west of 0-1608 Lincoln St.
wnstream cont'd		Riparian owner disposes of yard waste on a 10 - 15 ft. stretch of streambank contributing nutrients to creek.	Riparian owner workshop on proper yard waste disposal.	
ssing dow		Approx. 1/2 ft. diameter drainage pipe has eroded hill set back > 50 ft. west of streambank.	Place and fan out more rock rip rap to capture more sediment and reduce surface flow velocity.	Pipe located in field between creek and 1774 18th Ave PVT.
St. cro		Ground cover from a residential yard has spread over a 100" x 30" area of streambank prohibiting tree growth.	Pull ground cover by hand as soon as possible and monitor for future growth.	Residential yard is located at 0-1821 Leonard St.
Lincoln		Riparian owner mows up to streambank resulting in <25% stream cover.	Plant adequate buffer strip. Schedule riparian owner workshop incorporating landscaping for water quality.	Lawn located just downstream of Sunset Creek and upstream of Leonard St. crossing
	st intermittent stream	Sediment pile, approx. 15" x 2.5", is next to streambank adjacent to wet area. Rill erosion downstream with associated sediment piles. Road and agricultural runoff suspect.	IVVark with the Ottewa County Road Commission to address road runott it	East streambank located 35 ft. downstream of Leonard St. crossing
ossing		Failed Dam (Root Dam) allows for only a 2 ft. wide passage for flow.	Remove failed dam.	Downstream of Leonard St. crossing
to M45 cr		Approx. 3 ft. diameter drainage pipe on west streambank is 1/4 full of sediment and tree branches.	Work with the Ottawa County Road Commission to address storm water and sediment runoff from Leonard St.	15 ft. downstream of failed dam south of Leonard St.
St. crossing	ssing to we	Riparian owners mow up to streambank. To note, banks are not bare but vegetated with grass.	Plant adequate buffer strip. Neighboring resident could improve riparian buffer also. Schedule riparian owner workshop incorporating landscaping for water quality.	Gray and white houses on west drive off of Leonard St.
Leonard S	ard St. cros	Oil sheen noted on exposed streambed by wet area south of Leonard St. crossing. Runoff from Leonard St. or northern roadway suspected.	Work with the Ottawa County Road Commission to address road runoff from Leonard St.	Leonard St. crossing or northern roadway
	Leonar	Drainage pipe runs under residential driveway and drains surface runoff from residential area into nearby 50 ft. gully. Some erosion control measures have been taken but could be improved upon.	Place and fan out more rock rip rap to capture more sediment and reduce surface flow velocity.	42° 59' 21.83" N 85° 50' 3.84" W

Section	Sub- section	Description of Site	Recommendations	Location
	ossing)	Several streambank erosion sites evident along creek. One particular bank, eroded due to public access, has led to visible sedimentation. Sediment has been retained by a tree fall.	Consider streambank stabilization, wetland restoration, and adequate buffer/filter strips to address erosion and hydrology issues.	Aman Park
	M45 cross	Discharge from 1 ft. diameter drainage pipe is eroding bank.	Work with Ottawa County Road Commission to place and fan out rock rip rap to reduce discharge velocity and erosion.	Aman Park
cont'd	Bridge to M	Discharge from 1.5 ft. diameter drainage pipe is eroding streambank 6 ft. from the water's edge.	Work with Ottawa County Road Commission to place and fan out rock rip rap to reduce discharge velocity and erosion.	Aman Park
crossing co	Creek Brid	Streambank 25 ft. high with very little vegetation is impacted from road runoff from M45. Trash debris by M45 brought to streambank via storm water runoff.	Consider working with MDOT to address storm water runoff from M45. Vegetate bare area on bank.	Aman Park
M45 crc	(Sand C	Noted invasive species in Aman Park: Garlic Mustard and Autumn Olive.	Eradicate invasive species to prevent elimination of native species	Aman Park
crossing to	Park	In general, harmful changes in stream's flow regime have eroded streambank.	Address hydrology issues to prevent streambank erosion (e.g. wetland restoration).	Aman Park
St.	Aman	In general, foot traffic and public access have led to sedimentation and erosion contributing sediment to the creek.	Address public access issue by baring inappropriate access and defining trails (e.g. boardwalk, etc.) to reduce sedimentation and erosion.	Aman Park
Leonard	(unofficial trail)	"Unofficial trail", close to the edge of the stream, has led to numerous public access points causing streambank erosion. Trail on steep slopes has led to greater erosion.	Consider building boardwalk or paving "unofficial trail" to allow access but reduce sediment inputs to the creek via foot traffic. Create boardwalk "outlook" areas along trail to reduce current streambank erosion.	Aman Park
	Park (un	Rill erosion noted on steep trail leading to the Aman Park Bridge. Steep trail contributes sediment to creek.	Consider placing steps on steep hill for foot traffic and consider additional soil control measures.	Aman Park
	Aman	Rill erosion noted on steep bank opposite the "unofficial trail".	Consider vegetating bare area on bank. Address public access issue by baring access to steep hill.	Aman Park
y Trail	ream	Riparian owner mows approx. 100 ft. of streambank resulting in <25% stream cover.	Plant adequate buffer strip. Schedule riparian owner workshop incorporating landscaping for water quality.	First house downstream of M45
Country	tent st	Eroded, steep bank most likely affected by runoff from M45 and topography.	Work with MDOT to address storm water runoff from M45.	Downstream of M45
t t	intermit	Public access trail from riparian owner's land leads down to the creek and traverses a steep hill leading to erosion problems.	Recommend placing steps on steep hill to prevent erosion.	Residence (brown house) is located downstream of M45 west of streambank
downstream	to east	Public access has eroded bank despite the placement of concrete slabs for steps. Access trail begins at paved residential road.	Establish stairway to access creek to reduce erosion of streambank.	Downstream of residence noted above
crossing (crossing	ORV tracks indicate that landowner takes ORV into creek. Sand bags were placed at suspected entrance point. Impacted streambank has deteriorated.	Riparian owner workshop on recommended use of ORVs	Downstream of residence noted above
M45 cr	M45 cr	Approx. 75 ft. stretch of west streambank is periodically mowed resulting in nearly 0% cover on west bank. Currently, grasses and forbs are established.	Allow shrubs and trees to establish allowing for greater stream cover.	West bank is between M45 and downstream east intermittent stream

Section	Sub- section	Description of Site	Recommendations	Location
		Stream buffer on west streambank is only 5 ft. wide. To note, a bridge has been created to allow vehicles to pass over the creek.	Widen buffer by allowing vegetation to extended into mowed lawn.	Residency is located at the east end of Winants St. NW
		Three children seen swimming in the creek.	Assess whether this location meets the designated use of total body contact.	South of Little Sand Creek near west fallow field
		Less than 25% stream cover due to lack of sufficient cover. Currently, grasses and forbs are established.	Allow shrubs and trees to establish allowing for greater stream cover.	Fallow field can be found on west side of the creek west of Little Sand Creek
t cont'd	ourt	Overflow from constructed residential pond runs through a rock lined channel and has eroded the streambank and most likely contributes fertilizer runoff to the creek. To note, owner has placed rock rip rap around the most of the pond's perimeter to prevent erosion.	Add and fan out rock rip rap at the end of the rock lined channel to capture more sediment and reduce surface flow velocity to protect streambank. Plant vegetation around the pond.	Property located near southern end of fallow field located on the west side of the creek south
rail Court	Trail C	ORV track around the pond and near the creek may contribute small amounts of sediment during storm events. Doesn't appear that owner takes ORV into the creek, but it is a possibility.	Riparian owner workshop on recommended use of ORVs.	of Little Sand Creek
o Country T	n to Country	Riparian owner mows up to streambank.	Plant adequate buffer strip. Schedule riparian owner workshop incorporating landscaping for water quality.	Gray colored house located on a private drive off of Lover's Lane NW
stream t	East intermittent strean	Riparian owner mows up to streambank.	Plant adequate buffer strip. Schedule riparian owner workshop incorporating landscaping for water quality.	Tan colored house located on a private drive off of Lover's Lane NW
sing downs		Riparian owner has a sloped, paved drive most likely for the purpose of bringing lawnmower from the uphill garage to the downhill lawn. Runoff from the slopped paved track, and nearby drainage pipe, have eroded the streambank.	Place and fan out rock rip rap in the path of flow capture sediment and reduce surface flow velocity.	
M45 cro		Discharge from residential drainage tubing with 3 inch diameter is eroding streambank.	Place and fan out rock rip rap to capture sediment and reduce surface flow velocity or extend tubing into creek.	South of Little Sand Creek and north of 42° 57' 37.44" N 85° 50' 31.20" W
~		Gully erosion on a 40 ft. high, 8 ft. wide, 5 ft. deep area.	Revegetate eroded area. Address storm water runoff.	South of Little Sand Creek and north of 42° 57' 37.44" N 85° 50' 31.20" W
		Discharge from 2 drain pipes has eroded a 20-25 ft. long 3.5 ft. deep area on streambank. Concrete slabs are not preventing erosion. Drainage pipes are located near a maintained lawn.	Work with Ottawa County Road Commission to place and fan out rock rip rap to reduce discharge velocity and erosion. Plant adequate buffer strips.	42° 57' 37.44" N 85° 50' 31.20" W
		ORV track skirts streambank resulting in little to no vegetation.	Riparian owner workshop on proper use of ORVs. Plant adequate buffer strip.	Near open, grassed field on west side of the creek downstream of 42° 57' 37.44" N 85° 50' 31.20" W
		Landowner has a sloped, paved drive to bring lawnmower from the uphill garage to the downhill lawn. Drainage pipe adds additional runoff to track. Discharge from a second drain pipe along with drive runoff is eroding the streambank.	Place and fan out rock rip rap in the path of flow to capture sediment and reduce surface flow velocity. Extend first drain pipe into the creek to prevent adding additional flow to sloped, paved drive.	42° 59' 21.83" N 85° 50' 3.84" W

APPENDIX D HYDROLOGIC MODEL OF THE SAND CREEK WATERSHED

A Hydrologic Study of the Sand Creek Watershed

Dave Fongers
Hydrologic Studies Unit
Geological and Land Management Division
Michigan Department of Environmental Quality
July 17, 2003

Table of Contents

Summary	
Project Goals	
Watershed Description and Model Parameters	8
Model Results	
Appendices	
Appendix A: Sand Creek Hydrologic Model Parameters	
Appendix B: Sand Creek Dam Failure	

For comments or questions relating to this document, contact Dave Fongers at:

517-373-0210 fongersd@michigan.gov MDEQ, GLMD, P.O. Box 30458, Lansing, MI 48909

Summary

A hydrologic model of the Sand Creek watershed was developed by the Hydrologic Studies Unit (HSU) of the Michigan Department of Environmental Quality (MDEQ) using the Hydrologic Engineering Center's Hydrologic Modeling System (HEC-HMS). The hydrologic model was developed to help determine the effect of land use changes in the watershed on Sand Creek's flow regime and to provide design flows for streambank stabilization Best Management Practices (BMPs). The Sand Creek Watershed Committee may combine this information with other determinants, such as open space preservation, to decide what locations are the most appropriate for wetland restoration, stormwater detention, in-stream BMPs, or upland BMPs. The communities within the watershed could also use the information to help develop stormwater ordinances.

The hydrologic model does not attempt to simulate the effect of the dam that was located below Leonard from approximately 1860 until May 21, 1989. A memo discussing the possible effects of the dam failure is included as Appendix B.

The hydrologic model has four scenarios corresponding to 1800, 1978, 1998, and build-out land use. The build-out scenario is based on zoning maps provided by the local units of government. Because the zoning maps do not show any wetland areas, this scenario is further subdivided to model the effect of retaining or eliminating the wetland storage. General land use changes are shown in Figure 1, which shows that urban land uses are projected to continue to increase, with a net loss of natural areas. More specific information is provided in Table 1.

Because of these land use trends, the model predicts increases in runoff volumes and peak flows from 1800 to 1978/1998 and from 1978/1998 to build-out for all three design storms analyzed, as shown in Figures 2 through 7. The model predicts nearly identical flows for the 1978 to 1998 land use scenarios. The 1978 scenario has therefore been omitted from Figures 2 through 7 for clarity. Flow details for the land use scenarios are listed in Tables 2 through 7.

The projected runoff volume and peak flow increases from the 10 and 4 percent chance (10-year and 25-year), 24-hour storms, Figures 4 through 7, would aggravate the flooding problems that are reported throughout the watershed, unless mitigated through the use of effective stormwater management techniques.

The projected increases from the 50 percent chance (2-year), 24-hour storm, Figures 2 and 3, will increase channel-forming flows. The channel-forming flow in a stable stream usually has a one- to two-year recurrence interval. These relatively modest storm flows, because of their higher frequency, have more effect on channel form than extreme flood flows. Hydrologic changes that increase this flow can cause the stream to become unstable. Stream instability is indicated by excessive erosion at many locations throughout a stream reach. The projected increase in volume and peak flow would therefore further increase streambank erosion that is already reported to be excessive in Sand Creek below Leonard Street. Stormwater management techniques used to mitigate flooding can also help mitigate projected channel-forming flow increases. However, channel-forming flow criteria should be specifically considered in the

stormwater management plan so that the selected BMPs will be most effective. For example, detention ponds designed to control runoff from the 4 percent chance, 24-hour storm often do little to control the runoff from the 50 percent chance, 24-hour storm unless the outlet is specifically designed to do so.

The Sand Creek watershed is in Kent and Ottawa Counties. The model stormwater ordinance adopted by Kent County is currently being considered by Ottawa County. The Kent County model stormwater ordinance calls for a maximum release rate of 0.05 cubic feet per second per acre (cfs/acre) for runoff from the 50 percent chance, 24-hour storm for Zone A areas, the most environmentally sensitive of the three zones. Currently, the average yield from this storm for the Sand creek watershed is 0.02 cfs per acre, well below the 0.05 standard, with no subbasins higher than 0.05 cfs/acre. The yield from five of the fifteen subbasins may exceed 0.05 cfs/acre with continued development. The ordinance also calls for a maximum release rate of 0.13 cfs/acre for runoff from the 4 percent chance, 24-hour storm for Zones A and B. Currently, the average yield from this storm for the Sand Creek watershed is 0.10 cfs per acre, with three subbasins higher than 0.13 cfs/acre. The yield from eleven of the fifteen subbasins may exceed 0.13 cfs/acre with continued development. Additional details are shown in Figures 8 and 9 and listed in Table 8. The developers of the Sand Creek watershed plan may want to consider whether the proposed standards will adequately protect Sand Creek and its tributaries.

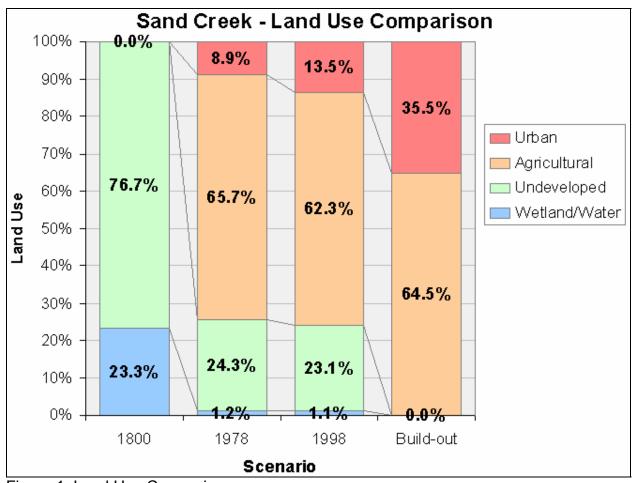


Figure 1: Land Use Comparison

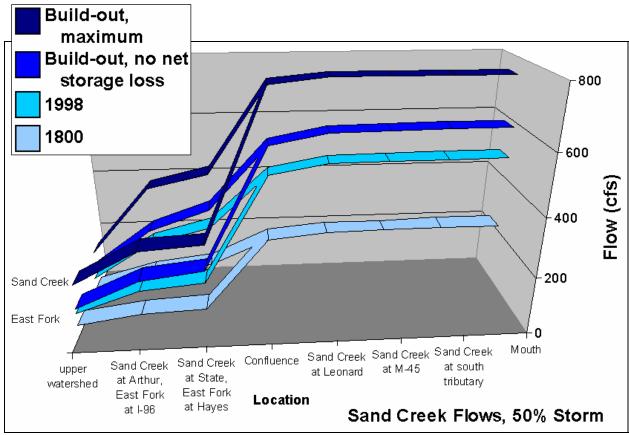


Figure 2: Predicted peak flows from 50 percent chance, 24-hour storm

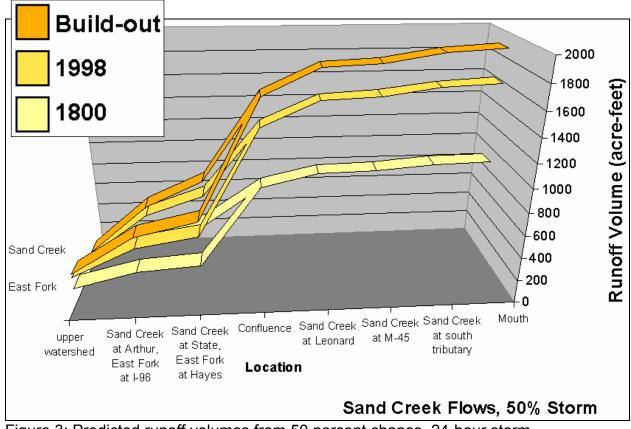


Figure 3: Predicted runoff volumes from 50 percent chance, 24-hour storm

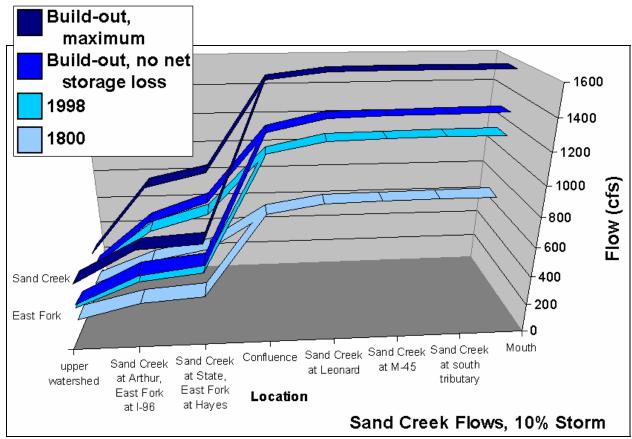


Figure 4: Predicted peak flows from 10 percent chance, 24-hour storm

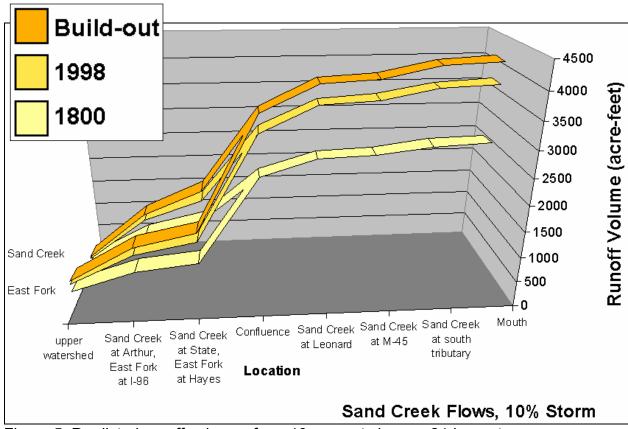


Figure 5: Predicted runoff volumes from 10 percent chance, 24-hour storm

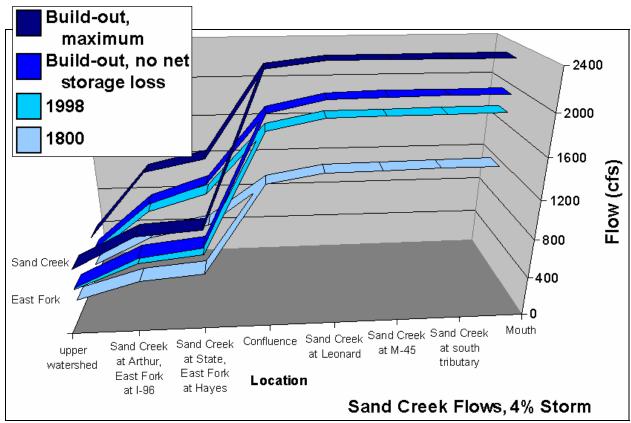


Figure 6: Predicted peak flows from 4 percent chance, 24-hour storm

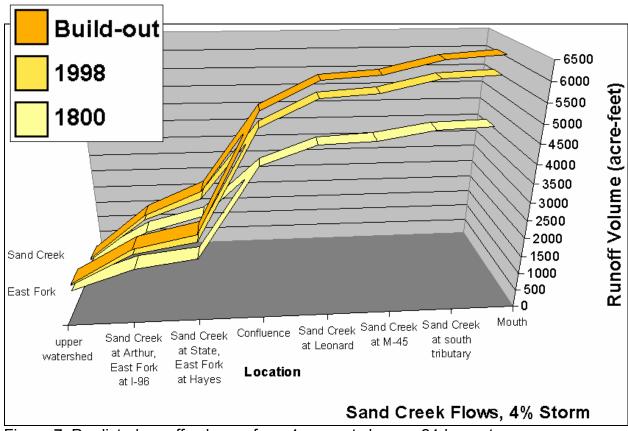


Figure 7: Predicted runoff volumes from 4 percent chance, 24-hour storm

Figure 8: Subbasin Yields, 50 percent chance, 24-hour storm

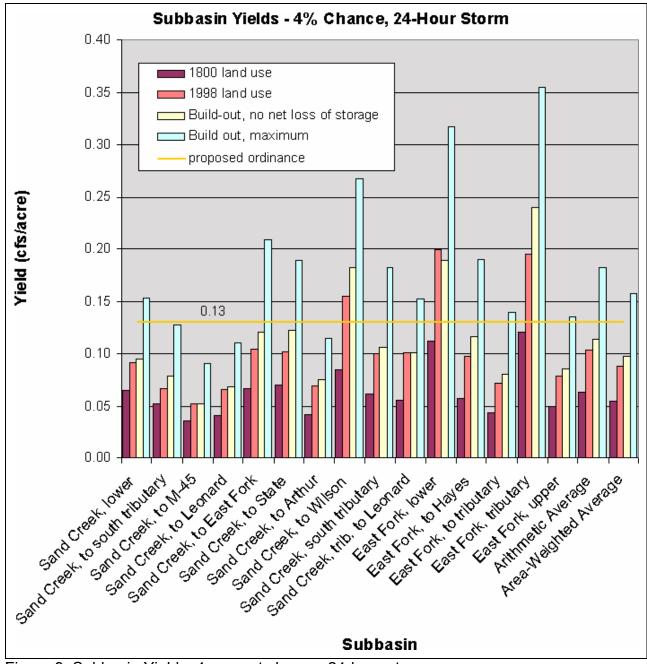


Figure 9: Subbasin Yields, 4 percent chance, 24-hour storm

Project Goals

The Sand Creek hydrologic study was initiated in support of a Lower Grand watershed project, which is funded in part by a United States Environmental Protection Agency (USEPA) Part 319 grant administered by the MDEQ. The goals of this study are:

- To better understand the watershed's hydrology and the impact of hydrologic changes, especially land use changes, in the Sand Creek watershed.
- To facilitate the selection and design of suitable BMPs.
- To provide information that can be used by local units of government to develop or improve stormwater ordinances.

Watershed Description and Model Parameters

The 54.8 square mile Sand Creek watershed, Figure 10, is located in Ottawa and Kent Counties. Sand Creek outlets to the Grand River in Ottawa County. The study divides the watershed into fifteen subbasins, as shown in Figure 11.

Our analysis of the watershed uses the curve number technique to calculate surface runoff volumes and peak flows. This technique, developed by the Natural Resources Conservation Service (NRCS) in 1954, represents the runoff characteristics from the combination of land use and soil data as a runoff curve number. The curve numbers for each subbasin, listed in Appendix A, were calculated from digital soil and land use data using Geographic Information Systems (GIS) technology.

Runoff curve numbers were calculated from the land use and soil data shown in Figures 12 through 16. Land use maps based on the MDEQ GIS data for 1800 and 1978 are shown in Figures 12 and 13, respectively. The 1800 land use information is provided at the request of the Sand Creek watershed committee. The MDEQ Nonpoint Source program does not expect or recommend that the flow regime calculated from 1800 land use be used as criteria for BMP design or as a goal for watershed managers. The 1998 land use map, Figure 14, is based on HSU's analysis of 1998 aerial photos and field verification. The build-out analysis, Figure 15, assumes land use is developed to the maximum allowed under zoning regulations. Zoning information was compiled by HSU from information provided by Ottawa County, the City of Walker, and Chester, Tallmadge, and Wright Townships. Because the zoning maps do not show any wetland areas, the Build-Out scenario is further subdivided to model the effect of retaining or eliminating the wetland storage. In the Build-Out, No Net Loss of Storage scenario, the 1998 storage coefficients were retained for the build-out condition. For the Build-Out, Maximum scenario, the storage coefficients were set equal to the times of concentration.

Land use information by subbasin is also detailed in Table 1. The Natural Resources Conservation Service (NRCS) soils data for the watershed is shown in Figure 16. Where the soil is given a dual classification, B/D for example, the soil type was selected based on land use. In these cases, the soil type is specified as D for natural land uses or the alternate classification (A, B, or C) for developed land uses. The runoff curve numbers calculated from the soil and land use data are listed in Appendix A.

The time of concentration for each subbasin, which is the time it takes for water to travel from the hydraulically most distant point in the watershed to the design point, was calculated from the United States Geological Survey (USGS) quadrangles. The storage coefficients, which represent storage in the subbasin, were iteratively adjusted to provide a peak flow reduction equal to the ponding adjustment factors described further in Appendix A. The two build-out scenarios differ only in their storage coefficients. In the *Build-Out, No Net Loss of Storage* scenario, the 1998 storage coefficients were used for the build-out condition to simulate the effect of retaining all of the wetlands. For the *Build-Out, Maximum* scenario, the storage coefficients were set equal to the corresponding time of concentration, which models the effect of eliminating all of the wetland storage. Lag for each reach, which is the travel time of water within each

section of the river, is also calculated from the USGS quadrangles. These values are listed in Appendix A.

The selected precipitation events were the 50, 10, and 4 percent chance (2-, 10-, and 25-year), 24-hour storms. Design rainfall values for these events are tabulated in *Rainfall Frequency Atlas of the Midwest*, Bulletin 71, Midwestern Climate Center, 1992, pp. 126-129, and summarized for this site in Appendix A. These values have been multiplied by 0.946 to account for the size of the watershed.

These parameters were then incorporated into a HEC-HMS model to compute runoff volume and flow. Some refinements to the model are possible based on calibration data from flow monitors currently installed at four locations in the watershed.

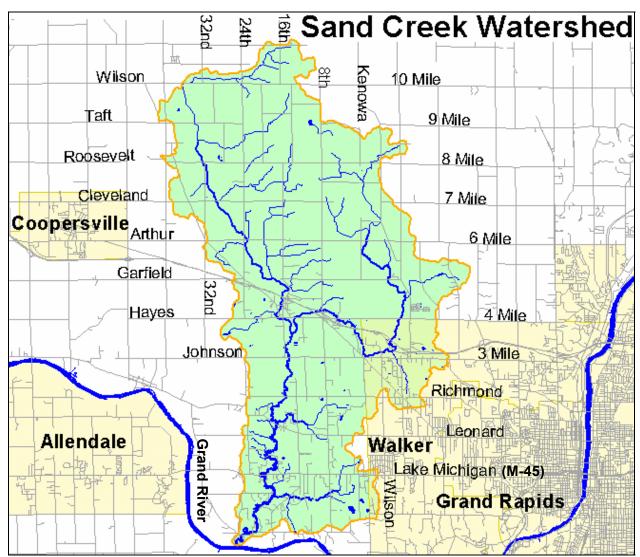


Figure 10: Delineated Sand Creek Watershed

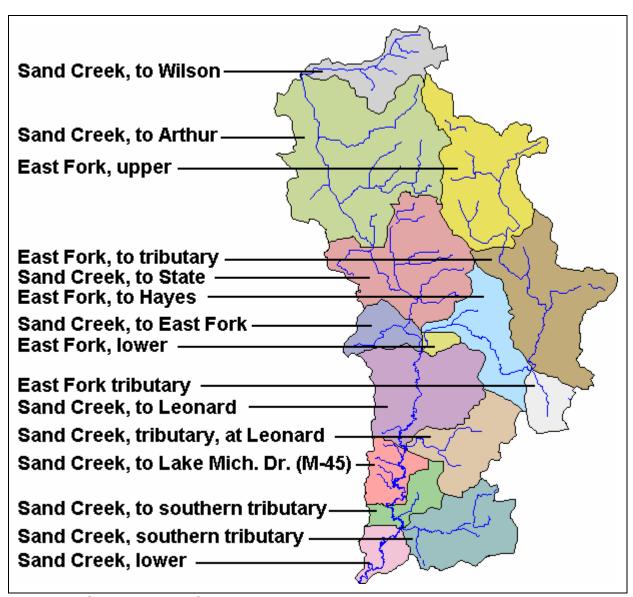


Figure 11: Subbasin Identification

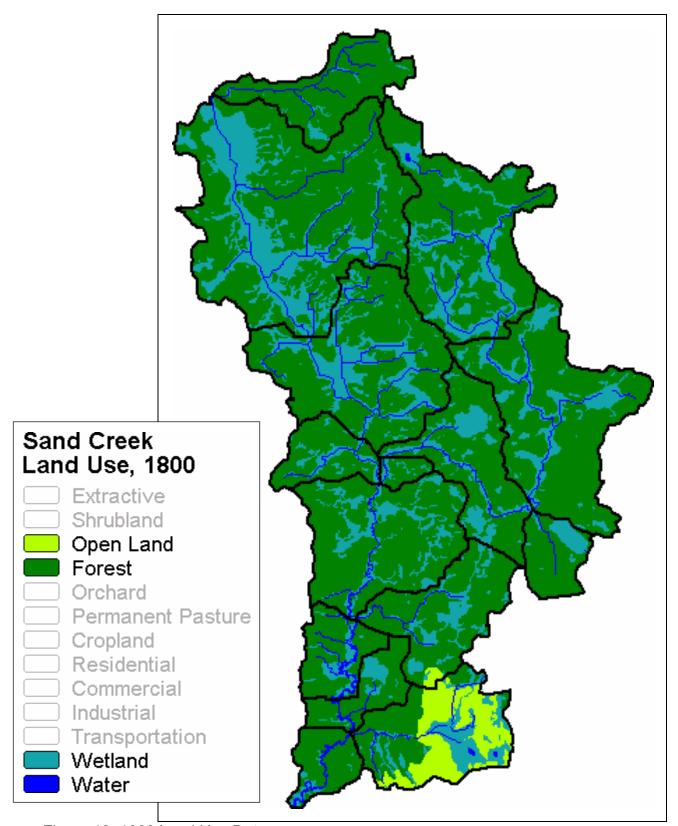


Figure 12: 1800 Land Use Data

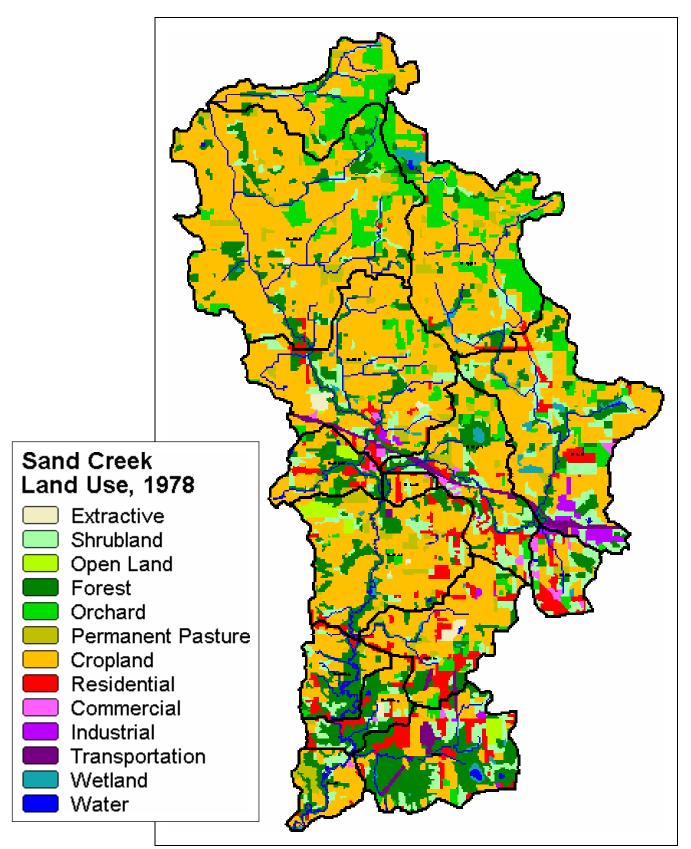


Figure 13: 1978 Land Use Data

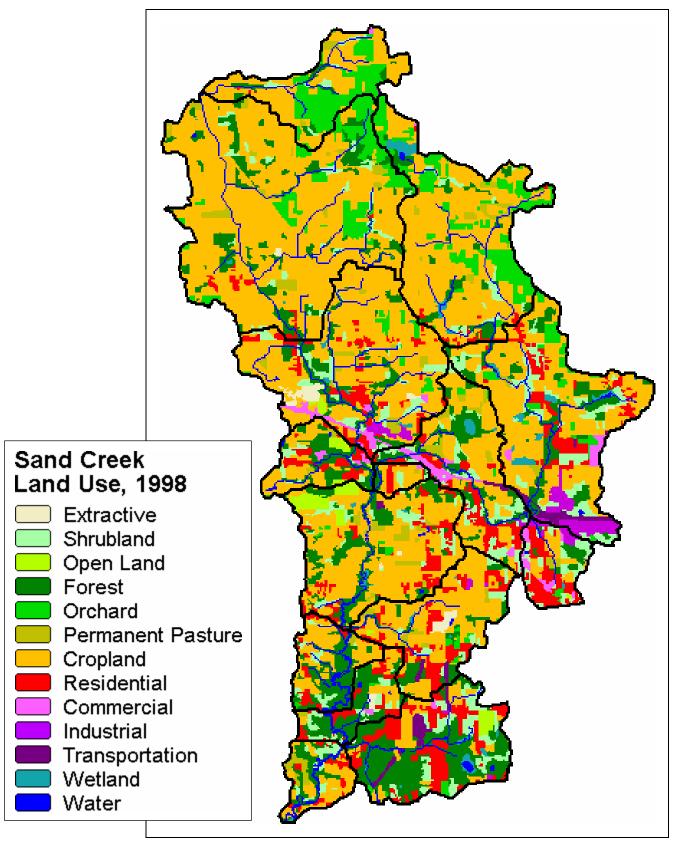


Figure 14: 1998 Land Use Data

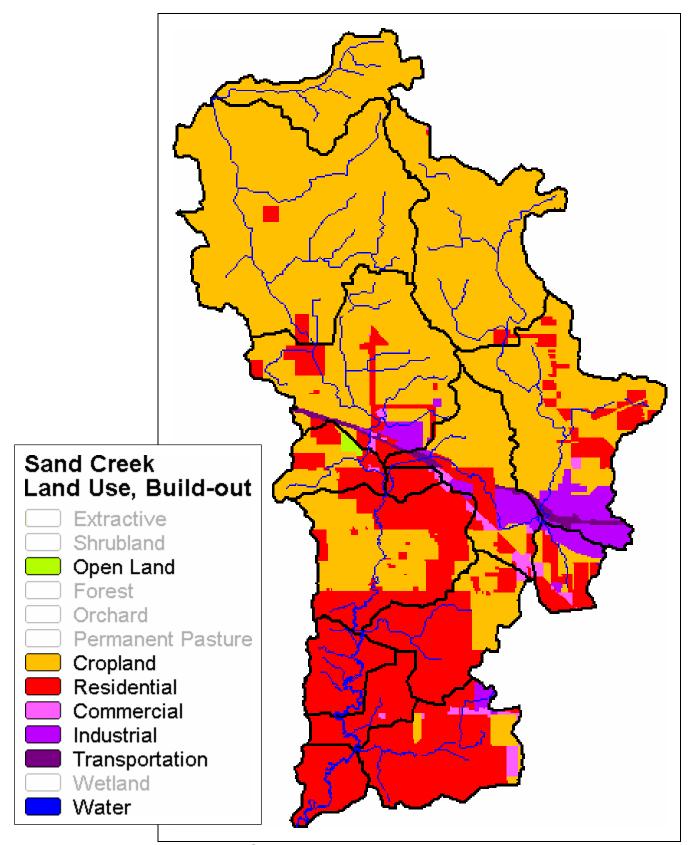


Figure 15: Zoned, or Build-Out, Land Use Data

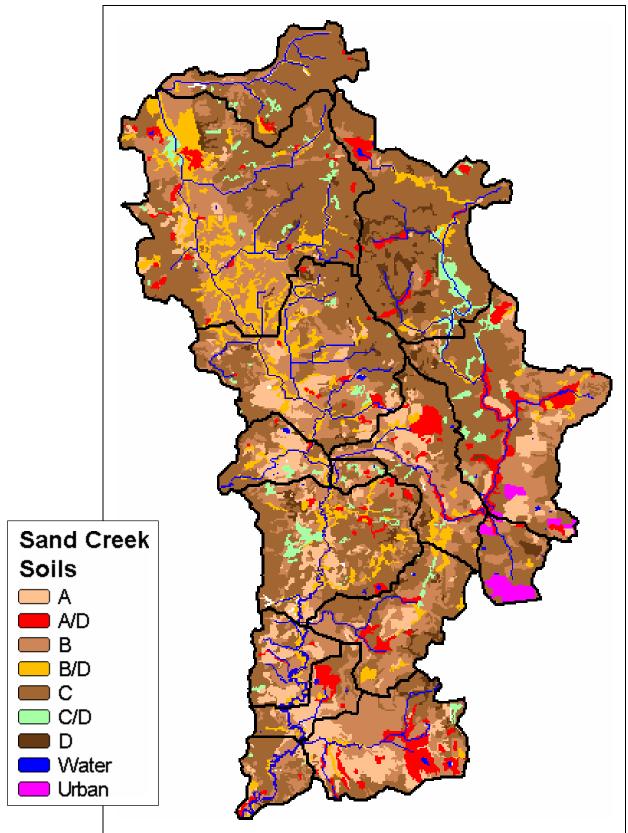


Figure 16: NRCS Soils Data

Table 1: Land Use by Subbasins (Land uses less than 0.5 percent are not listed because all percentages are rounded to the nearest percent)

			l	1	1	1	1				I	I	I	
Description	Scenario	Residential	Commercial	Industrial	Road	Pit	Cemeteries, Outdoor Rec.	Cropland	Orchard	Pasture	Herbaceous Openland	Forest	Water	Wetland
	1800											88%		12%
Sand	1978	3%	1%					47%		11%	10%	28%		
Creek, lower	1998	12%						39%		10%	11%	28%		
iowei	Build- out	100%												
	1800											84%		16%
Sand	1978	16%				2%		21%	1%	1%	15%	42%	1%	
Creek, to south	1998	20%	1%			2%		18%	1%	1%	14%	43%	1%	
tributary	Build- out	99%	1%											
	1800											78%		22%
Sand	1978	9%						41%	2%	1%	8%	40%		
Creek,	1998	10%						40%	2%	1%	7%	40%		
to M-45	Build- out	100%												
Cand	1800											80%		20%
Sand Creek,	1978	6%					4%	58%	1%	6%	6%	18%		1%
to	1998	10%					5%	55%	1%	4%	6%	17%		1%
Leonar d	Build- out	52%	1%					47%						
	1800											80%		20%
Sand	1978	11%	2%				5%	39%	2%	4%	6%	30%	1%	
Creek, to East	1998	15%	3%				6%	35%		3%	6%	31%	1%	
Fork	Build- out	44%	1%				5%	49%				0.110		
	1800											73%		27%
Sand	1978	3%	1%	1%	2%	2%		65%	5%	4%	7%	10%		1%
Creek,	1998	8%	3%	2%		2%	1%	61%	3%	3%	7%	10%		1%
to State	Build- out	14%	1%	4%	2%			78%						
	1800											69%		31%
Sand	1978							71%	11%	4%	3%	11%		
Creek, to	1998	1%						73%	9%	3%	3%	11%		
Arthur	Build- out	2%						98%						
	1800											95%		5%
Sand	1978							59%	28%	2%	3%	7%		3,0
Creek,	1998							55%	33%	2%	3%	7%		
to Wilson	Build-								/0		2,0	. , ,		
	out							100%						
Commit	1800										43%	33%		24%
Sand Creek,	1978	13%		1%	4%		3%	19%	2%		15%	40%	1%	2%
south	1998	22%			4%		3%	13%	1%		13%	40%	1%	2%
tributary	Build- out	83%	5%	3%				9%						

Description	Scenario	Residential	Commercial	Industrial	Road	Pit	Cemeteries, Outdoor Rec.	Cropland	Orchard	Pasture	Herbaceous Openland	Forest	Water	Wetland
Sand	1800										2%	79%		19%
Creek, tributary	1978	14%		1%	2%	2%		55%	6%	4%	5%	10%		1%
to	1998	17%		1%	2%	2%		57%	2%	4%	5%	10%		1%
Leonar d	Build- out	70%	1%					29%						
	1800											79%		21%
East	1978	19%	2%					50%		2%	11%	15%		
Fork,	1998	19%	2%					50%		2%	11%	15%		
lower	Build- out	94%	5%	1%										
	1800											76%		24%
East	1978	8%	2%		4%			41%	5%	5%	16%	19%		1%
Fork, to	1998	13%	5%		1%			41%	1%	5%	13%	19%		1%
Hayes	Build- out	22%	6%	13 %	3%			56%						
	1800											79%		21%
East	1978	4%		4%	3%			50%	8%	1%	15%	13%		2%
Fork, to	1998	9%	2%	6%	3%			48%	5%	1%	12%	13%		2%
tributary	Build- out	14%		14 %	3%			69%						
	1800											82%		18%
East	1978	20%	7%	4%				22%	4%	3%	27%	11%		1%
Fork,	1998	33%	8%	8%			1%	15%	2%	3%	21%	9%		
tributary	Build- out	49%	6%	23 %				23%						
	1800											74%		26%
East	1978	1%						55%	27%	4%	4%	7%		2%
Fork,	1998	2%						63%	21%	3%	3%	7%		2%
upper	Build- out	1%						99%						
	1800										3%	74%		23%
	1978	5%	1%	1%	1%		1%	53%	9%	3%	8%	16%		1%
Totals	1998	9%	1%	1%	1%	1%	1%	53%	7%	3%	7%	16%		1%
	Build- out	30%	1%	4%	1%			65%						

Model Results

The modeled results for the 50, 10, and 4 percent chance, 24-hour storms and the 1800, 1978, 1998, and build-out land use scenarios are illustrated in Figures 2 through 7 and detailed in Tables 2 through 7. Because the runoff volumes computed for the *Build-Out, No Net Loss of Storage* and the *Build-Out, Maximum* scenarios are identical, these values are only shown once and labeled *Build-Out*. Table 2 lists the predicted peak flows from each subbasin. These values represent the peak flow contribution from the subbasins, not the flow in the creek. Table 3 lists the predicted peak flows at locations in the creek. Table 4 compares peak flow changes from 1800 to 1998 and from 1998 to build-out conditions. Table 5 lists the predicted runoff volumes from each subbasin. Table 6 lists the predicted runoff volumes at locations in the creek. Table 7 compares runoff volume changes from 1800 to 1998 and from 1998 to build-out conditions.

The model does not predict significant flow changes from 1978 to 1998. The projected increases in stormwater runoff volume and peak flows from 1998 to build-out conditions are of primary interest to Sand Creek watershed's stormwater managers. Model predictions based on this land use change show significant increases in runoff volumes and peak flows for all three design storms. Peak flows and runoff volumes from the 50 percent chance, 24-hour storm are predicted to increase more, on a percentage basis, than flows from the 10 percent chance, 24-hour storm or the 4 percent chance, 24-hour storm. The projected increases in runoff volumes and peak flows from the 50 percent chance storm would increase the channel forming flow, which will increase streambank erosion that is already reported to be excessive in Sand Creek below Leonard Street. The projected increases in runoff volumes and peak flows from the 10 and 4 percent chance storms will aggravate flooding problems, which are reported throughout the watershed. These projected increases can be moderated through the use of effective stormwater management techniques.

The Sand Creek watershed is within Kent and Ottawa Counties. The model stormwater ordinance adopted by Kent County is currently being considered by Ottawa County. The Kent County model stormwater ordinance calls for a maximum release rate of 0.05 cfs/acre for runoff from the 50 percent chance, 24-hour storm for Zone A areas, the most environmentally sensitive of the three zones. Currently, the average yield from this storm is 0.02 cfs per acre, with no subbasins higher than 0.05 cfs/acre, as shown in Figure 15. The yield from five of the fifteen subbasins may exceed 0.05 cfs/acre with continued development. The ordinance also calls for a maximum release rate of 0.13 cfs/acre for runoff from the 4 percent chance, 24-hour storm for Zones A and B. Currently, the average yield from this storm is 0.10 cfs per acre, with three subbasins higher than 0.13 cfs/acre, as shown in Figure 16. The yield from eleven of the fourteen subbasins may exceed 0.13 cfs/acre with continued development. Additional details are listed in Table 8.

Table 2: Peak flows per subbasin

Subbasin	Peak		cfs) fror -hour s		ance,	Peak		cfs) froi -hour s		ance,	Peak	,	cfs) fro -hour s		ance,
	1800 land use	1978 land use	1998 land use	Build- out, no net loss of storage	Build- out, max.	1800 land use	1978 land use	1998 land use	Build- out, no net loss of storage	Build- out, max.	1800 land use	1978 land use	1998 land use	Build- out, no net loss of storage	Build- out, max.
Sand Creek, lower	7	14	13	14	25	24	40	37	40	68	47	69	66	69	111
Sand Creek, to south tributary	4	7	7	10	18	20	28	28	35	60	42	54	54	64	105
Sand Creek, to M-45	4	8	8	8	17	17	27	27	27	52	35	51	51	51	89
Sand Creek, to Leonard	21	52	48	52	95	69	129	123	129	225	129	217	208	217	350
Sand Creek, to East Fork	7	16	16	21	43	30	52	52	63	118	62	97	97	113	195
Sand Creek, to State	44	100	93	125	221	153	256	242	300	501	281	428	409	487	758
Sand Creek, to Arthur	55	129	129	148	256	164	304	304	334	551	295	492	492	532	819
Sand Creek, to Wilson	23	72	67	90	146	77	173	164	202	308	144	274	263	311	455
Sand Creek, south tributary	12	35	35	39	77	66	127	127	136	248	146	240	240	254	437
Sand Creek, tributary to Leonard	17	47	47	47	78	58	122	122	122	196	113	205	205	205	311
East Fork, lower	3	9	9	8	15	12	26	26	25	44	26	46	46	44	73
East Fork, to Hayes	17	41	44	61	116	64	116	123	153	269	126	200	210	251	412
East Fork, to tributary	28	65	70	86	175	94	164	172	200	380	176	278	290	327	566
East Fork, tributary	18	38	41	59	98	54	93	98	126	196	98	150	157	193	286
East Fork, upper	40	82	88	100	179	110	185	194	213	362	192	295	307	331	526

Table 3: Peak flows in Sand Creek

	Peak	•	ofs) fror -hour s	m 50% ch	nance,	Peak	`	ofs) fron -hour s	n 10% ch torm	ance,	Peak	,	cfs) fror -hour st	m 4% cha	ance,
Location	1800 land use	1978 land use	1998 land use	Build- out, no net loss of storage	Build- out, max.	1800 land use	1978 land use	1998 land use	Build- out, no net loss of storage	Build- out, max.	1800 land use	1978 land use	1998 land use	Build- out, no net loss of storage	Build- out, max.
East Fork at 6 mile	40	82	88	100	179	110	185	194	213	362	192	295	307	331	526
East Fork at I-96	72	148	159	188	286	210	344	361	405	580	369	547	568	624	842
East Fork at Hayes	83	167	179	215	299	245	388	407	462	608	426	614	638	706	884
Sand Creek at Wilson	23	72	67	90	146	77	173	164	202	308	144	274	263	311	455
Sand Creek at Arthur	77	200	195	237	376	240	471	462	529	788	436	749	737	822	1160
Sand Creek at State	105	257	248	306	421	321	596	582	672	880	569	933	915	1027	1293
Sand Creek at confluence with East Fork	192	426	429	526	719	574	993	997	1146	1487	1009	1560	1566	1750	2177
Sand Creek at Leonard	213	465	466	565	738	638	1078	1080	1232	1531	1110	1684	1687	1875	2243
Sand Creek at M-45	215	469	469	568	739	644	1087	1088	1240	1533	1121	1696	1699	1887	2246
Sand Creek at south tributary	219	472	473	572	739	651	1091	1093	1246	1533	1129	1701	1703	1891	2245
Sand Creek at mouth	220	473	474	573	739	653	1093	1094	1247	1533	1131	1703	1705	1894	2245

Table 4: Predicted peak flow changes

	18	300 to 199	98		build-out	•		8 to build-	
Location	E00/	400/	40/		torage los	4%		maximum	
Location	50%	10%	4%	50%	10% Chance		50%	10% Chance	4% Chance
	Chance Storm	Chance Storm	Chance Storm	Chance Storm	Storm	Chance Storm	Chance Storm	Storm	Storm
Flow Changes in Cro		Storin	Storin	Storin	Stollil	Storin	Storm	Stofffi	Storm
Sand Creek at M-45	118%	69%	52%	21%	14%	11%	57%	41%	32%
Sand Creek/East Fork	124%	74%	55%	23%	15%	12%	67%	49%	39%
Sand Creek at State	137%	81%	61%	24%	16%	12%	70%	51%	41%
East Fork at Hayes	115%	66%	50%	20%	13%	11%	67%	49%	39%
Flow Changes from	Subbasir	ıs							
Sand Creek, lower	41%	54%	95%	5%	6%	9%	70%	83%	95%
Sand Creek, to south tributary	29%	39%	64%	19%	23%	36%	93%	115%	155%
Sand Creek, to M-45	44%	56%	102%	0%	0%	0%	75%	91%	105%
Sand Creek, to Leonard	61%	77%	130%	4%	5%	8%	68%	83%	97%
Sand Creek, to East Fork	55%	72%	131%	17%	21%	31%	101%	129%	168%
Sand Creek, to State	45%	58%	108%	19%	24%	36%	85%	107%	139%
Sand Creek, to Arthur	67%	85%	134%	8%	10%	15%	67%	81%	98%
Sand Creek, to Wilson	83%	112%	191%	18%	23%	35%	73%	88%	119%
Sand Creek, south tributary	64%	93%	180%	6%	7%	10%	82%	96%	120%
Sand Creek, tributary to Leonard	82%	108%	176%	0%	0%	0%	51%	61%	68%
East Fork, lower	78%	112%	225%	-5%	-6%	-8%	59%	67%	70%
East Fork, to Hayes	67%	93%	155%	20%	25%	36%	96%	119%	160%
East Fork, to tributary	64%	84%	152%	13%	16%	23%	96%	121%	152%
East Fork, tributary	61%	79%	128%	23%	29%	45%	82%	101%	140%
East Fork, upper	60%	77%	117%	8%	10%	14%	71%	86%	104%

Table 5: Runoff volumes per subbasin

		Volume chance 2				Volume chance 2				Volume chance 2		
Subbasin	1800 land use	1978 land use	1998 land use	Build -out	1800 land use	1978 land use	1998 land use	Build -out	1800 land use	1978 land use	1998 land use	Build -out
Sand Creek,												
lower	15	26	24	26	46	64	61	64	77	101	97	101
Sand Creek,												
to south												
tributary	11	14	14	19	40	45	45	55	71	79	79	91
Sand Creek,												
to M-45	13	23	23	23	48	66	66	66	85	110	110	110
Sand Creek,												
to Leonard	74	144	134	144	214	330	314	330	356	505	485	505
Sand Creek,	4.0					=-			0.0		4.4=	404
to East Fork	16	26	26	34	52	70	70	83	90	115	115	131
Sand Creek,	0.4	400	400	004	000	440	000	400	440	000	044	744
to State	94	182	169	224	269	416	396	480	448	636	611	714
Sand Creek,	046	270	270	400	F66	040	040	004	040	1010	1010	1215
to Arthur	216	370	370	423	566	812	812	891	913	1219	1219	1315
Sand Creek, to Wilson	48	95	89	115	128	204	194	233	209	303	292	338
Sand Creek,	40	95	09	115	120	204	194	233	209	303	292	330
south												
tributary	29	56	56	62	107	160	160	170	195	267	267	280
Sand Creek,		- 50	50	02	107	100	100	170	100	201	201	200
trib. to												
Leonard	48	86	86	86	136	201	201	201	227	310	310	310
East Fork,										0.0	0.0	
lower	4	9	9	8	14	22	22	20	23	34	34	32
East Fork,												
to Hayes	46	78	85	113	137	193	203	248	231	304	317	372
East Fork,												
to tributary	95	184	197	241	272	420	441	508	453	643	669	749
East Fork,												
tributary	29	42	45	62	72	92	96	120	113	138	143	172
East Fork,												
upper	151	233	248	281	366	490	512	559	571	722	749	805

Table 6: Runoff volumes in Sand Creek

		off Volun 50% cha	ance 24-			Volume chance 2				off Volun % chance		
Location	1800 land use	1978 land use	1998 land use	Build -out	1800 land use	1978 land use	1998 land use	Build -out	1800 land use	1978 land use	1998 land use	Build -out
East Fork at 6 mile	151	233	248	281	366	490	512	559	571	722	749	805
East Fork at I-96	275	458	490	585	709	1002	1050	1188	1137	1503	1561	1726
East Fork at Hayes	320	536	575	698	845	1195	1253	1435	1368	1807	1878	2098
Sand Creek at Wilson	48	95	89	115	128	204	194	233	209	303	292	338
Sand Creek at Arthur	263	465	459	539	695	1016	1006	1124	1122	1522	1511	1653
Sand Creek at State	357	647	628	762	963	1432	1402	1604	1570	2158	2121	2367
Sand Creek at confluence with East Fork	697	1219	1238	1502	1873	2719	2747	3143	3050	4113	4148	4627
Sand Creek at Leonard	816	1448	1457	1731	2220	3249	3262	3674	3631	4927	4942	5442
Sand Creek at M-45	827	1471	1480	1755	2264	3315	3328	3740	3713	5037	5052	5552
Sand Creek at south tributary	866	1541	1550	1835	2409	3521	3534	3965	3978	5383	5398	5924
Sand Creek at mouth	879	1566	1573	1861	2451	3585	3594	4030	4051	5485	5495	6025

Table 7: Predicted runoff volume changes

	1	800 to 199	98	199	98 to build-	-out
Location	50%	10%	4%	50%	10%	4%
Location	Chance	Chance	Chance	Chance	Chance	Chance
	Storm	Storm	Storm	Storm	Storm	Storm
Runoff Volume Changes in Creek	(
Sand Creek at M-45	79%	47%	36%	19%	12%	10%
Sand Creek/East Fork	78%	47%	36%	21%	14%	12%
Sand Creek at State	76%	46%	35%	21%	14%	12%
East Fork at Hayes	80%	48%	37%	21%	15%	12%
East Fork, upper	64%	40%	31%	13%	9%	7%
Runoff Volume Changes from Su	bbasins					
Sand Creek, lower	57%	34%	26%	8%	5%	4%
Sand Creek, to south tributary	26%	15%	11%	36%	21%	16%
Sand Creek, to M-45	72%	39%	30%	0%	0%	0%
Sand Creek, to Leonard	80%	47%	36%	8%	5%	4%
Sand Creek, to East Fork	63%	36%	28%	28%	18%	14%
Sand Creek, to State	80%	47%	36%	32%	21%	17%
Sand Creek, to Arthur	72%	43%	34%	14%	10%	8%
Sand Creek, to Wilson	85%	51%	40%	30%	20%	16%
Sand Creek, south tributary	95%	50%	37%	10%	6%	5%
Sand Creek, tributary to Leonard	80%	47%	36%	0%	0%	0%
East Fork, lower	103%	58%	44%	-7%	-5%	-4%
East Fork, to Hayes	84%	49%	37%	33%	22%	17%
East Fork, to tributary	108%	62%	48%	23%	15%	12%
East Fork, tributary	54%	35%	27%	37%	25%	20%
East Fork, upper	64%	40%	31%	13%	9%	7%

Table 8: Subbasin yields

			`	cre) from					cre) from	
	5	50% ch	ance 2	4-hour stor	m		4% cha	ance 24	4-hour storr	n
Subbasin				Build-out,					Build-out,	
Oubbasiii	1800	1978	1998	no net	Build-	1800	1978	1998	no net	Build-
	land	land	land	loss of	out,	land	land	land	loss of	out,
	use	use	use	storage	max.	use	use	use	storage	max.
Sand Creek,										
lower	0.01	0.02	0.02	0.02	0.04	0.06	0.10	0.09	0.10	0.15
Sand Creek, to										
south tributary	0.01	0.01	0.01	0.01	0.02	0.05	0.07	0.07	0.08	0.13
Sand Creek, to										
M-45	0.00	0.01	0.01	0.01	0.02	0.04	0.05	0.05	0.05	0.09
Sand Creek, to										
Leonard	0.01	0.02	0.02	0.02	0.03	0.04	0.07	0.07	0.07	0.11
Sand Creek, to										
East Fork	0.01	0.02	0.02	0.02	0.05	0.07	0.10	0.10	0.12	0.21
Sand Creek, to										
State	0.01	0.02	0.02	0.03	0.06	0.07	0.11	0.10	0.12	0.19
Sand Creek, to										
Arthur	0.01	0.02	0.02	0.02	0.04	0.04	0.07	0.07	0.07	0.12
Sand Creek, to										
Wilson	0.01	0.04	0.04	0.05	0.09	0.08	0.16	0.15	0.18	0.27
Sand Creek,										
south tributary	0.01	0.01	0.01	0.02	0.03	0.06	0.10	0.10	0.11	0.18
Sand Creek,										
tributary to										
Leonard	0.01	0.02	0.02	0.02	0.04	0.06	0.10	0.10	0.10	0.15
East Fork,										
lower	0.01	0.04	0.04	0.04	0.07	0.11	0.20	0.20	0.19	0.32
East Fork, to									0.40	0.40
Hayes	0.01	0.02	0.02	0.03	0.05	0.06	0.09	0.10	0.12	0.19
East Fork, to		0.00								
tributary	0.01	0.02	0.02	0.02	0.04	0.04	0.07	0.07	0.08	0.14
East Fork,	0.00	0.0-		0.07	0.40	0.40	0.40	0.40	0.04	0.0-
tributary	0.02	0.05	0.05	0.07	0.12	0.12	0.19	0.19	0.24	0.35
East Fork,	0.04	0.00	0.00	0.00	0.05	0.05	0.00	0.00	0.00	0.40
upper	0.01	0.02	0.02	0.03	0.05	0.05	0.08	0.08	0.08	0.13
Arithmetic	0.04	0.00	0.00	0.00	0.05	0.00	0.46	0.46	0.14	0.40
Average	0.01	0.02	0.02	0.03	0.05	0.06	0.10	0.10	0.11	0.18
Area-Weighted		0.05								0.40
Average	0.01	0.02	0.02	0.03	0.05	0.05	0.09	0.09	0.10	0.16

Appendices

Appendix A: Sand Creek Hydrologic Model Parameters

This appendix is provided so that the model may be recreated by an engineering consultant, or others, if desired. Table A1 provides the design rainfall values specific to the region of the state where Sand Creek is located. Figure A1 summarizes the hydrologic elements in the HEC-HMS model. Tables A2 and A3 provide the parameters that were specified for each of these hydrologic elements. The initial loss field in HEC-HMS is left blank so that the default equation based on the curve number is used. Table A4 provides the reach parameters for the routing method. The control specified in HEC-HMS was for a seven day duration using a five-minute time interval.

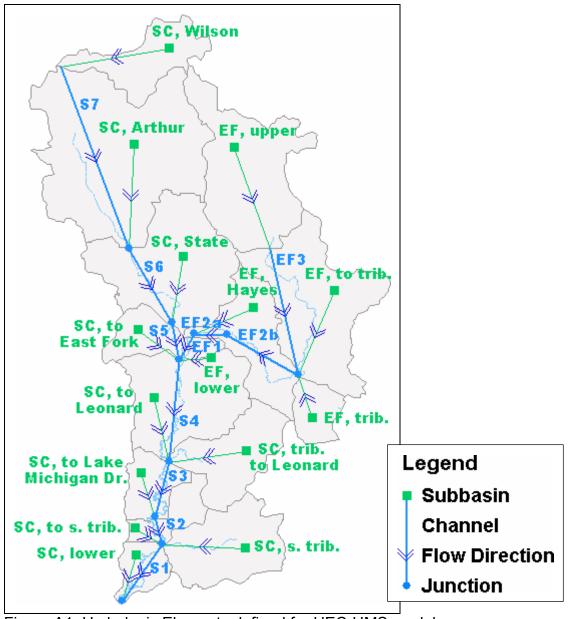


Figure A1: Hydrologic Elements defined for HEC-HMS model

Table A1: Design Rainfall Values for Kent and Ottawa County (Region 8)

Precipitation Event	Precipitation*
50% chance (2-year), 24-hour storm	2.24"
10% chance (10-year), 24-hour storm	3.33"
4% chance (25-year), 24-hour storm	4.21

^{*}standard values were multiplied by 0.946 to account for the watershed size

Table A2: Subbasin Parameters – Area, Curve Number, Time of Concentration

	Area	Initial		Curv	e Numb	er	Time of
Subbasin	(sq. mi.)	Loss	1800	1978	1998	Build-out	Concentration (hours)
Sand Creek, lower	1.1	Default	67	73	72	73	5.00
Sand Creek, to south							
tributary	1.3	Default	63	65	65	68	4.53
Sand Creek, to M-45	1.5	Default	63	68	68	68	7.16
Sand Creek, to							
Leonard	5.0	Default	68	76	75	76	9.16
Sand Creek, to East							
Fork	1.5	Default	65	70	70	73	3.38
Sand Creek, to State	6.3	Default	68	76	75	79	5.42
Sand Creek, to Arthur	11.1	Default	71	78	78	80	10.61
Sand Creek, to Wilson	2.7	Default	70	79	78	82	4.08
Sand Creek, south							
tributary	3.7	Default	62	68	68	69	3.06
Sand Creek, trib. to							
Leonard	3.2	Default	68	75	75	75	5.69
East Fork, lower	0.4	Default	66	74	74	73	1.98
East Fork, to Hayes	3.4	Default	67	73	74	78	5.10
East Fork, to tributary	6.3	Default	68	76	77	80	8.34
East Fork, tributary	1.3	Default	73	78	79	84	3.15
East Fork, upper	6.1	Default	74	80	81	83	10.07
Total	54.8						

Table A3: Subbasin Parameters – Storage Coefficients

Subbasin		% char hour st)% char -hour st	•		% chan -hour st	
Subbasiii	1800	1978, 1998	Build- out	1800	1978, 1998	Build- out	1800	1978, 1998	Build- out
Sand Creek, lower	17.3	12.4	5.0	12.9	11.0	5.0	11.2	10.00	5.0
Sand Creek, to south									
tributary	20.8	13.2	4.5	13.5	10.3	4.5	11.2	9.20	4.5
Sand Creek, to M-45	18.3	23.3	7.2	10.2	18.9	7.2	8.0	6.70	7.2
Sand Creek, to									
Leonard	29.7	22.7	9.2	22.3	20.4	9.2	18.5	16.20	9.2
Sand Creek, to East									
Fork	32.0	10.1	3.4	26.0	8.5	3.4	22.5	18.20	3.4
Sand Creek, to State	23.5	12.4	5.4	17.8	11.3	5.4	14.8	10.40	5.4
Sand Creek, to Arthur	17.8	23.5	10.6	11.3	21.7	10.6	9.2	7.40	10.6
Sand Creek, to Wilson	15.0	8.2	4.1	11.8	7.6	4.1	10.7	10.30	4.1
Sand Creek, south									
tributary	36.0	9.6	3.1	30.4	7.5	3.1	26.3	19.80	3.1
Sand Creek, trib. to									
Leonard	14.8	12.5	5.7	11.2	11.4	5.7	9.7	7.20	5.7
East Fork, lower	9.2	5.1	2.0	6.0	4.6	2.0	5.0	4.20	2.0
East Fork, to Hayes	21.5	13.1	5.1	15.7	11.4	5.1	13.0	10.40	5.1
East Fork, to tributary	30.5	23.3	8.3	24.0	20.6	8.3	20.5	18.20	8.3
East Fork, tributary	10.4	6.5	3.2	8.4	6.1	3.2	7.4	5.70	3.2
East Fork, upper	34.0	23.3	10.1	29.0	21.5	10.1	25.0	19.60	10.1

Table A4: Channel Reach Parameters

Reach	Lag (hours)
Sand Creek 1: mouth to southern tributary	5.90
Sand Creek 2: southern tributary to M-45	1.95
Sand Creek 3: M-45 to Leonard	6.88
Sand Creek 4: Leonard to confluence with East Fork	8.71
Sand Creek 5: confluence with East Fork to State	2.15
Sand Creek 6: State to Arthur	5.39
Sand Creek 7: Arthur to Wilson	10.50
East Fork 1: Confluence with Sand Creek to Hayes	1.04
East Fork 2: Hayes to near I-96	5.23
East Fork 3: near I-96 to 6 mile	8.35

Appendix B: Sand Creek Dam Failure

MICHIGAN DEPARTMENT OF ENVIRONMENTAL QUALITY

INTEROFFICE COMMUNICATION

May 21, 2002

TO: Janice Tompkins, Surface Water Quality Division

Grand Rapids District Office

FROM: Dave Fongers, Hydrologic Studies Unit

Land and Water Management Division

SUBJECT: Sand Creek, Ottawa and Kent Counties

At your request on behalf of a recently-formed Sand Creek watershed group, the Hydrologic Studies Unit (HSU) of the Land and Water Management Division (LWMD) began a watershed monitoring study on April 11, 2002. The locations of the flow monitors and rain gages within the watershed are shown in Figure 1.

This study was requested because increased magnitude and frequency of flood (out of bank) flows and streambank erosion have been identified as problems throughout the watershed. The stream reach that appears to be experiencing the most extensive streambank erosion is located from approximately Leonard Street to Lake Michigan Drive. Increases in the flow regime and the associated streambank erosion would be reduced below Lake Michigan Drive because the Grand River is a hydraulic control that attenuates peak flows near its confluence with Sand Creek.

Changes in the flow regime of Sand Creek as a result of changes in the hydrologic characteristics of the watershed are thought to be a contributing cause of the increased erosion and flood flows, particularly because portions of the watershed are under development pressure from the expanding Grand Rapids metropolitan area. A better understanding of these problems and their causes is necessary to identify and design appropriate Best Management Practices (BMPs) to rehabilitate the stream. This assessment would be required for the installation of BMPs funded through a Clean Michigan Initiative (CMI) grant.

As part of these watershed monitoring studies, we routinely measure discharge at each monitoring location to develop a stage-discharge relationship, termed a rating curve. While doing this at the Leonard Street site, we discovered the remains of a failed dam, shown in Figures 2 and 3. We have researched this dam with the assistance of Jim Hayes with the LWMD's Dam Safety Program. A dam has been at this site since approximately 1860. In a January 1980 report, the hydraulic height, normal pool storage capacity, and maximum pool storage capacity of the dam were listed as 9.8 feet, 80 acre-feet, and 200 acre-feet, respectively. The design of the dam is shown in Figure 4.

The dam foundation failed on May 21, 1989. Photos of the site on May 22, 1989 are shown in Figures 5, 6, and 7. As a result of the failure, the sediment that had accumulated behind the dam was released downstream. The hydraulic gradient, or slope, of the stream increased significantly, increasing the water velocity and erosive stress on the banks. The movement of

Janice Tompkins Page 5 May 21, 2002

the sediment and changes in the flow regime could easily have altered the form, or morphology, of the channel. The sediment released by the dam failure may now be relatively stationary, deposited in the Grand River, near the mouth of Sand Creek, or on the Sand Creek floodplain. We would not, however, expect the channel morphology to have fully adapted to the altered flow regime in thirteen years. Other researchers have indicated that streams can take 60 years or more to adapt to an altered flow regime. Excessive and extensive streambank erosion is a typical symptom of unstable channel morphology.

The HSU recommends that current land use in the watershed be compared to 1978 land use. If land use has not changed significantly, hydrologic modeling to help identify the cause of the streambank erosion would not be needed. Modeling may still be needed to provide data for the selection and design of appropriate BMPs. Modeling solely to address flooding questions would not be appropriate under the Section 319 grant that is funding this watershed study. Because the monitors require no maintenance, we recommend that the monitoring program be continued until all parties involved decide whether hydrologic modeling is needed.

cc: Ralph Reznick, SWQD Ric Sorrell, LWMD Gerald Fulcher, LWMD Jim Hayes, LWMD

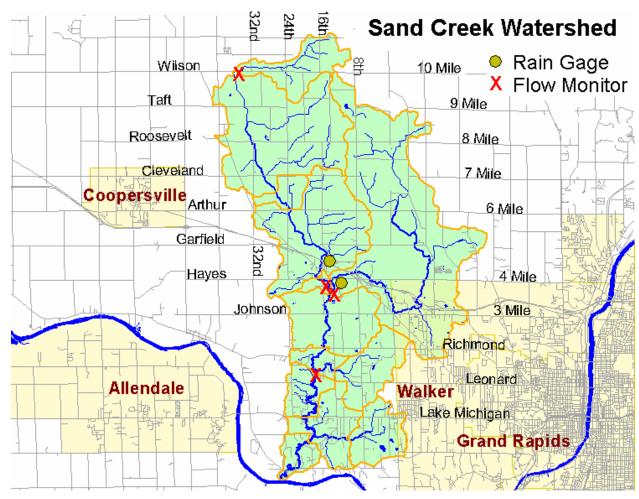


Figure 1: Watershed Study Monitoring Locations

Figure 2: Failed dam below Leonard Street, May 2002

Figure 3: Failed dam below Leonard Street, May 2002

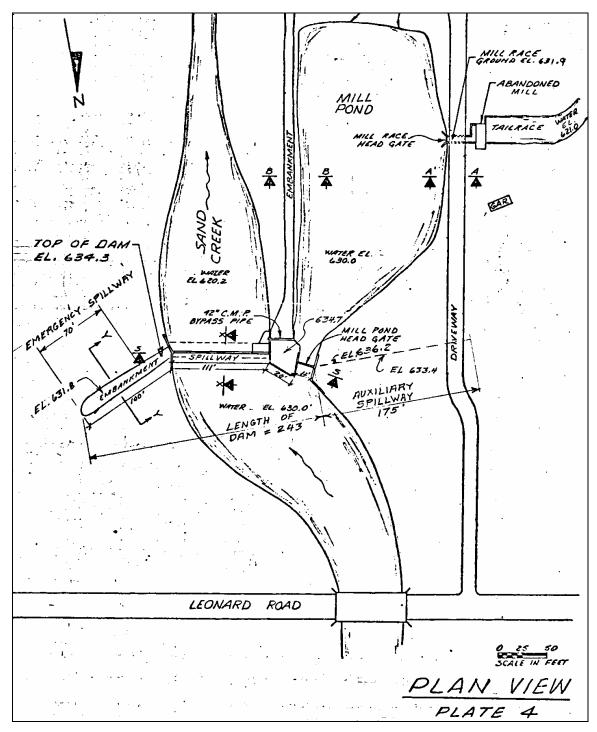


Figure 4: Plan View of Root Dam

Figure 5: Root Dam on 5/22/1989, one day after failure

Figure 6: Root Dam on 5/22/1989, one day after failure

Figure 7: Impoundment of Root Dam on 5/22/1989, one day after failure

APPENDIX E DATA RESULTS FROM THE PRELIMINARY WATERSHED ASSESSMENT OF THE SAND CREEK WATERSHED

Preliminary Watershed Assessment of the Sand Creek Watershed: Data Set

Data Set										
Date	Station	TSS	Cl	S04	N03-N	NH3-N	SRP-P	TP-P	TKN-N	E. coli
Date	Station	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	per 100 mL
5/8/2003	Arthur St.	2	24	52	2.8	0.05	0.05	0.06	0.81	
	Berlin Fair Dr.	3	25	51	2.3	0.10	0.04	0.05	1.10	
5/8/2003		3	23	29	0.21	0.03	0.09	0.12	1.27	
		5	35	40	1.4	0.09	0.05	0.07	1.14	<u> </u>
	Leonard St.									
	Aman Park	5	37	40	1.4	0.11	0.05	0.06	1.02	
5/8/2003	Luce St.	9	38	39	1.3	0.07	0.05	0.08	1.19	
5/15/2003	Arthur St.	2	20	25	0.21	0.03	0.09	0.13	1.02	
5/15/2003	Berlin Fair Dr.	1	23	49	2.5	0.06	0.05	0.06	0.82	
5/15/2003	8th Ave.	1	22	51	3.1	0.04	0.05	0.06	0.81	ł
5/15/2003	Leonard St.	8	30	35	1.3	0.06	0.06	0.09	1.03	
5/15/2003	Aman Park	10	32	35	1.3	0.08	0.06	0.10	0.85	
5/15/2003		12	33	34	1.2	0.05	0.06	0.09	0.71	
5/22/2003		1	46	52	2.8	0.05	0.03	0.06	0.78	200
			41	34	0.60	0.03	0.10	0.15		
	Berlin Fair Dr.	3		51		0.05	0.10	0.15	0.97	- 55
5/22/2003		2	38		2.2				0.75	17
	Leonard St.	5	37	36	1.3	0.06	0.05	0.09	1.09	0
	Aman Park	8	64	36	1.3	0.07	0.05	0.09	0.95	33 *
5/22/2003	Luce St.	15	52	33	1.2	0.06	0.05	0.10	0.87	33 *
6/5/2003	Arthur St.	2	38	50	1.8	0.06	0.04	0.09	0.69	
6/5/2003	Berlin Fair Dr.	2	101	49	1.3	0.06	0.03	0.06	0.54	
6/5/2003		3	54	43	0.59	0.03	0.07	0.10	0.61	
	Leonard St.	3	77	45	1.2	0.04	0.04	0.08	0.67	
	Aman Park	2	65	43	1.3	0.09	0.05	0.10	0.61	
6/5/2003		3	61	43	1.2	0.03	0.03	0.07	0.45	
		2	20	54	2.2	0.03	0.03	0.09	0.65	97
6/12/2003			25							
	Berlin Fair Dr.	3		50	1.8	< 0.01	0.06	0.08	0.77	192
6/12/2003		2	24	49	0.73	0.01	0.09	0.11	0.74	503
6/12/2003	Leonard St.	6	35	44	1.5	0.03	0.06	0.08	0.70	253
6/12/2003	Aman Park	5	39	44	1.5	0.02	0.06	0.08	0.68	-
6/12/2003	Luce St.	4	43	45	1.5	0.02	0.05	0.07	0.86	245
6/19/2003	Arthur St.	1	61	54	1.7	0.03	0.03	0.10	0.92	116
6/19/2003	Berlin Fair Dr.	6	55	52	1.3	0.02	0.02	0.07	0.72	311
6/19/2003	8th Ave.	2	56	52	0.85	< 0.01	0.04	0.09	0.60	2233
6/19/2003	Leonard St.	10	68	47	1.1	0.04	0.02	0.07	0.84	432
	Aman Park	7	73	43	1.1	0.04	0.02	0.06	0.75	167
6/19/2003		5	68	43	1.1	0.08	< 0.01	0.05	0.90	193
6/26/2003			- 00		1.1	0.00	(0.01	0.02	0.70	302
	Berlin Fair Dr.									668
6/26/2003										1467
	Leonard St.									146
	Aman Park									129
6/26/2003	Luce St.									114
6/27/2003	Arthur St.	4	46	45	1.39	0.12	0.08	0.16	0.65	
6/27/2003	Berlin Fair Dr.	3	50	44	0.90	0.07	0.04	0.08	0.49	
6/27/2003	8th Ave.	2	84	41	0.42	0.04	0.03	0.07	0.16	
	Leonard St.	13	72	48	1.01	0.08	0.01	0.09	0.22	
	Aman Park	8	59	41	1.02	0.05	0.03	0.07	0.37	
6/27/2003		5	76	46	1.13	0.06	0.03	0.07	0.35	
	Arthur St.	6	29	52	1.40	0.06	0.11	0.19	0.39	1500
		6	62	48	1.04	0.06	0.11	0.19		
	Berlin Fair Dr.		94	40		0.04			0.42	1167
7/2/2003		6			0.43		0.04	0.18	0.23	594
	Leonard St.	8	79	46	1.18	0.05	0.04	0.08	0.27	210
	Aman Park	9	51	46	1.24	0.04	0.03	0.08	0.26	110
7/2/2003	Luce St.	8	79	42	1.12	0.05	0.04	0.08	0.28	179
7/10/2003	Arthur St.	19	44	43	1.4	0.04	0.22	0.25	0.78	1133
7/10/2003	Berlin Fair Dr.	70	64	34	0.78	0.14	0.11	0.26	0.86	TNTC
7/10/2003	8th Ave.	59	100	20	0.43	0.04	0.10	0.21	0.82	TNTC
7/10/2003	8th Ave. (duplicate)	60	83	20	0.41	0.04	0.10	0.22	0.78	TNTC
	Leonard St.	47	67	38	0.96	0.04	0.07	0.10	0.37	988
	Aman Park	18	81	42	1.0	0.03	0.07	0.11	0.38	690
7/10/2003		10	84	42	1.0	0.03	0.07	0.09	0.40	404
1/10/2003	_acc 5t.	10	UT	72	1.0	0.03	0.07	0.07	0.70	707

1

Preliminary Watershed Assessment of the Sand Creek Watershed: Data Set

Data Set										
Date	Station	TSS	Cl	S04	N03-N	NH3-N	SRP-P	TP-P	TKN-N	E. coli
Dute	Sauton	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	per 100 mL
7/17/2003	Arthur St.	3	45	49	1.6	0.04	0.07	0.24	0.42	341
7/17/2003	Berlin Fair Dr.	6	57	51	1.2	0.04	0.07	0.08	0.39	737
7/17/2003	8th Ave.	4	98	41	0.60	0.03	0.07	0.08	0.51	522
7/17/2003	Leonard St.	9	67	46	1.3	0.02	0.06	0.07	0.34	248
7/17/2003	Aman Park	6	76	49	1.4	0.02	0.06	0.07	0.43	348
7/17/2003	Aman Park (dup)	6	73	48	1.3	0.01	0.06	0.06	0.33	219
7/17/2003		9	69	49	1.4	0.02	< 0.01	0.07	0.40	370
8/6/2003	Arthur St.	2	30	50	1.6	0.09	0.19	0.16	1.04	1200
8/6/2003	Berlin Fair Dr.	9	45	43	1.6	0.12	0.11	0.14	0.95	TNTC
	8th Ave.	6	41	34	1.8	0.08	0.10	0.16	1.42	424
	Leonard St.	15	57	35	1.2	0.13	0.08	0.14	0.96	1033
	Aman Park	22	63	36	1.4	0.13	0.08	0.16	1.00	1167
8/6/2003		21	36	36	1.4	0.14	0.07	0.14	1.02	768
	Arthur St.	5	202	41	0.85	0.05	0.15	0.22	0.25	231
	Berlin Fair Dr.	2	63	49	1.25	0.03	0.03	0.06	0.20	233 *
9/9/2003		2	67	52	0.62	0.03	0.02	0.04	0.22	224
	Leonard St.	1	55	49	1.34	0.03	0.02	0.05	0.14	116
9/9/2003		1	80	49	1.46	0.02	0.02	0.05	0.20	163
9/9/2003		0	71	51	1.34	0.02	0.01	0.04	0.17	1020
	Arthur St.	2	27	43	1.14	0.05	0.03	0.28	0.50	100 *
	Arthur St. (duplicate)	1	54	47	1.22	0.04	0.04	0.28	0.47	82
	Berlin Fair Dr.	3	46	48	1.19	0.02	0.03	0.07	0.23	342
9/18/2003	8th Ave.	2	79	41	0.48	0.03	0.03	0.08	0.23	8100 **
	Leonard St.	1	68	45	1.29	0.02	0.02	0.06	0.20	153
9/18/2003		1	69	44	1.38	0.01	0.03	0.05	0.20	153
9/18/2003	Luce St.	2	235	42	0.99	< 0.01	0.02	0.05	0.23	432
10/14/2003	Arthur St.	2	23	56	0.26	0.06	0.07	0.15		< 33
	Berlin Fair Dr.	2	68	50	0.67	0.08	0.01	0.07		289
10/14/2003	8th Ave.	1	79	45	0.14	0.03	0.03	0.04		258
10/14/2003	Leonard St.	2	57	48	0.75	0.03	0.02	0.05		< 33
10/14/2003	Aman Park	2	60	47	0.77	0.03	0.02	0.04		67 *
10/14/2003	Luce St.	4	53	49	0.87	0.02	0.02	0.04		129
10/28/2003	Arthur St.	0	34	57	0.35	< 0.01	0.01	0.07		< 33
	Berlin Fair Dr.	0	51	52	0.69	0.02	0.04	0.05		116
10/28/2003	8th Ave.	2	65	46	0.30	0.01	0.02	0.04		663
10/28/2003	Leonard St.	1	46	48	0.81	< 0.01	0.03	0.04		33
10/28/2003		0	58	51	0.87	0.01	0.03	0.03		< 33.3 *
10/28/2003	Luce St.	2	67	51	0.90	0.01	0.01	0.03		58
11/4/2003	Arthur St.	25	57	61	6.70	0.08	0.13	0.21	1.38	TNTC
11/4/2003	Arthur St. (duplicate)	36	59	47	2.50	0.11	0.13	0.25	1.22	TNTC
	Berlin Fair Dr.	33	30	53	5.91	0.18	0.13	0.32	1.48	TNTC
11/4/2003	8th Ave.	15	40	33	0.97	0.10	0.15	0.19	0.89	TNTC
	Leonard St.	38	66	46	2.48	0.12	0.13	0.26	1.05	TNTC
11/4/2003	Aman Park	34	59	43	2.04	0.11	0.11	0.21	1.01	TNTC
11/4/2003	Luce St.	43	59	38	1.52	0.09	0.09	0.16	1.12	TNTC

TNTC Observed count was too numberous to count (>6000).

^{*} Arithmetic mean used since one of the observed counts was 0.

** Number represents only one of the observed counts (one of the observed counts is indefinite or too numerous to count).

^{***} Positive result but number of colonies could not be determined.

APPENDIX F STRUCTURAL AND VEGETATIVE BEST MANAGEMENT PRACTICES

Structural and	Vegetative Best Managemer	t Practices														
BEST MANAGEMENT PRACTICE	DESCRIPTION	POLLUTANT ADDRESSED	POLLUTANT REMOVAL EFFICIENCY	POTENTIAL SOURCES OF POLLUTANTS	ADDITIONAL BMPS TO COMPLETE TREATMENT TRAIN	EXPECTED LIFE SPAN	MAINTENANCE REQUIREMENTS	TRAINING REQUIREMENTS	APPLICABILITY TO SITE	ENVIRONMENTAL CONCERNS	HYDROLOGIC EFFECTS TO CONSIDER	INSTALLATION COSTS	OPERATION AND MAINTENANCE COSTS	SPECIAL CONSIDERATIONS	COMMUNITIES USING BMP	MDEQ/ NRCS LINK
PRETREATMENT (ex. s Catch basin inlet devices	Devices that are inserted into the storm drain inlets to filter or absorb sediment, pollutants, and sometimes oil and grease. The capture of hydrocarbons can be enhanced with the use of absorbents.	solids, sediments	Moderate to high; 70% of total suspended solids(5); <20% of total phosphorous. Assume same as Hydrodynamic Separators.	Storm water runoff	Catch basin cleaning program	2 - 5 years	High; Remove and dispose of sediment, trash and debris, and change filters as needed (approximately every 6 months)	Low/moderate	Needs less than 5 acres of drainage area	Proper disposal of sediment		\$50 - 1,500 (5)	\$300/Catch Basin/year (5)	Useful for retrofit	MDOT	
Permanent Sediment Basin (including forebays)	Man-made depression in the ground where runoff water is collected and stored to allow suspended solids to settle out. May have inlet and outlet structures to regulate flow.	Sediments, solids	Moderate to high; 50% of Total Suspended Solids(4);<20% of Total Phosphorous (4)	Storm water runoff	Detention/Infiltration	50+ years	Moderate; Remove and dispose of sediment, trash and debris, and repair erosion.	Low	Use for large drainage areas (≥ 1 acre), at storm sewer outfalls, may be included with detention pond, and to collect overland flow			Low; Capital Cost: \$0.60/cft of storage volume excluding land purchase. (1)	7% of capital cost/year. (1)	Not always aesthetically pleasing	Wyoming	http://www.deg.state.mi.us/c ocuments/deg-swg-nps- sb.pdf
Combination curb with water spreader and vegetated swale	Curb with cut outs. Storm water is directed off the street at the cut out areas (not spillways).	Sediments, water volumes	High; 80% of total suspended solids. 50% of total phosphorous.	Storm water runoft	Vegetated swale, detention pond	30+ years (6)	Moderate; Remove and dispose of sediment, trash and debris, and repair erosion.	Low	now.		Capacity must be equal to swale or channel	Moderate	Low	Need to stabilize cut out sections behind curb to prohibit soil erosion. Requires a vegetated swale behind the curb. Street sweeping.		
Check dams, Grade control structures (NRCS practice 410)	Stones, sandbags, or gravel generally used to stabilize grades in natural or artificial channels by carrying runoff from one grade to another. Designed to prevent banks from slumping, reduce runoff velocity, and prevent channel erosion from an excessive grade.	Sediment and attached pollutants, hydrologic flow	High (classic gully erosion) (12) Moderate (streambank erosion) (12) Low (runoff/ flooding) (12)	Streambank erosion, soil erosion, storm water runoff	Buffer/filter strips, grassed waterway, diversion, critical area planting	20+ years	Low. Periodic inspections. Repair/replace failing structures. Address any vegetation and erosion problems.	Moderate. Design and installation should be done by a registered professional engineer	Widely applicable to erosive areas with an excessive grade. Place in drainage channel.	Concentrated flows may cause erosion downstream - discharge point should be investigated.	Cause backwater effect; slows down water velocities; capacity equal to channel	Low to moderate. \$4,650/structure or \$800/vegetated chute (9) - EQIP, WHIP	Low. \$60/structure (9)	Use native grasses when planting filter strip. Easements or permits may need to be obtained.	GVSU; Barry, Ionia, Ottawa County Road Commissions	http://www.deq.state.mi.us/d ocuments/deq-swq-nps- cd.pdf
Hydrodynamic Separator Units (CDS Units, Stormceptors, Vortechnics, Downstream Defender)	Precast, flow-through, underground units that capture sediments, debris, and oils (in some units). The capture of oils can be enhanced with the use of absorbents. (CDS, Vortechs, Downstream Defender, Stormceptor)	Sediment, solids	Effective; 60% TSS Removal (1); <20% of total phosphorous (4)	Storm sewer system	Street sweeping, stream protection practices	50+	Moderate; Remove and dispose of sediment, trash and debris	Minimum	Use for small drainage areas (≤ 1 acre) with high pollutant loads, inline with storm sewer system, and to collect overland flow	Proper disposal of sediment	Catches first flush. High flows by-pass unit through pipe system	High. \$15,000/acre of impervious (2); 6,000/cfs capacity	\$500/practice (2); \$1,000/year (3)	Placed upstream of storm sewer discharge. Unit is below grade. Need to allow access for cleaning the chambers.	East Grand Rapids	http://www.deg.state.mi.us/d ocuments/deg-swg-nps- ogs.pdf
Ponded Type Detention	Small, man-made basin to maintain a permanent pool of water with emergent wetland vegetation around the bank. Designed to	Sediment;	Moderate; 80% of total suspended solids (4) 50% of total phosphorous (4). Of the		Sediment forebay or lother form of	50+ years	Low; Remove and dispose of sediment, trash and	Low. Design and installation should be	Use for large drainage areas (≥ 10 acre), at storm sewer outfalls, and	Possible downstream warming:	Provides full control of peak discharges	Low to moderate; \$1/cft of storage	5% of capital	Need available land area, can include sediment	East Grand Rapids, OCRC, Housing developments in	http://www.deg.state.mi.us/d
Basin (wet pond)	capture and remove particulate matter, nonsoluble metals, organic matter and nutrients through settling. It generally has inlet and outlet structures to regulate flow.	nutrients; hydrologic flow	detention/retention basins, this practice may be the most effective in removing pollutants.	Storm water runofi	pretreatment, Riprap, Sediment Basin, Filter	50+ years (1,6)	debris; repair erosion; and plant replacement vegetation as needed.	done by a professional	to collect overland flow. Ponds generally will not work in soils with high infiltration rates.	low bacteria removal, west Nile Virus (aerator can remove threat of West Nile Virus)		volume, excluding land purchase (1)	cost/year. (1)	forebay, requires more planning, maintenance and land to construct.	Barry County, Industrial areas of Wright Township	ocuments/deq-swq-nps- wdb.pdf
Dry Detention Basin	Small, man-made basin designed to capture and remove particulate matter. It generally has inlet and outlet structures to regulate flow, but is dry for most of the year.	Sediment; hydrologic flow	Moderate; 80% of total suspended solids (4) 50% of total phosphorous (4)	Storm water runoft	Sediment forebay or other form of pretreatment	50+ years	Low; Remove and dispose of sediment, trash and debris; repair erosion.	Minimum	Needs land that will allow inlet at a higher elevation than outlet	Low bacteria and nutrient removal. If vegetation is not maintained, erosion and resuspension will occur.	Reduced peak flows and no standing water	Low to moderate	Low to moderate	Basin grading very important to prevent pools of standing water.	MDOT, OCDC	
Extended Detention Basin	Extended detention basins are designed to receive and detain storm water runoff for a prolonged period of time, typically up to 48 hours. Benefits include: receives and detains storm water runoff, minimizes downstream erosion, reduces flooding, and provides enhanced pollutant removal.	Sediment and attached pollutants, nonsoluble metals, nutrients, hydrologic flow	Moderate to high	Storm water runofi	Riprap, grassed waterways, sediment basins		Moderate to High	Mow buffer/filter strip, remove debris and inspect basin regularly during wet weather, and remove sediment from basin every 5-10 years.	Depends on infiltration rates and soil permeability	Can significantly warm the water in the marsh area over a short period of time	Designed to receive and detain storm water runoff for a prolonged period of time. Outlet device regulates the flow from the basin.			Determine site location of BMP through a hydrologic analysis. Designed as either single-stage or two- stage. Need spill response plan.	Housing developments in Barry County	http://www.deq.state.mi.us/c ocuments/deq-swq-nps- edb.pdf
Parking lot storage	Storage of storm water on parking lots is used primarily to reduce the peak discharge of storm water from the surrounding area during moderate storms. Will reduce peak runoff from small sites and provide some flood storage. This helps reduce stream bank erosion and flooding.	Sediment and attached pollutants, hydrologic flow		Storm water runoff, soil erosion	Grassed Waterway, Porous or Modular Pavement, Infiltration Trench, Buffer/Filter Strip, Street Sweeping		Low to Moderate - Sweep and clear debris from the parking lot after storms. Regularly inspect and clean the release drain.	Design and installation should be done by a professional	This BMP will work best in areas that do not have a steep slope. Parking lot slope should be 1% or less.	Because detention time is small, only some large solids will settle. Solids must be removed often to prevent resuspension.	Reduces peak runoff from small sites, provides some flood storage, and reduces flooding.			A spill response plan must be developed. BMP is most effective when used with other BMPs that allow for infiltration or sediment trapping.	City of Grand Rapids	http://www.deq.state.mi.us/cocuments/deq-swq-nps-pls.pdf

BEST MANAGEMENT PRACTICE	DESCRIPTION	POLLUTANT ADDRESSED	POLLUTANT REMOVAL	POTENTIAL SOURCES OF	ADDITIONAL BMPS TO COMPLETE	EXPECTED LIFE SPAN	MAINTENANCE REQUIREMENTS	TRAINING REQUIREMENTS	APPLICABILITY TO	ENVIRONMENTAL CONCERNS	HYDROLOGIC EFFECTS TO	INSTALLATION COSTS	OPERATION AND	SPECIAL CONSIDERATIONS	COMMUNITIES USING BMP	MDEQ/ NRCS LINK
Water and Sediment Control Basin (638)	An earth embankment or a combination ridge and channel generally constructed across the slope and minor watercourses to form a sediment trap and water detention basin. Improves water quality by trapping sediment on uplands and reducing gully erosion. Grass cover may provide wildlife habitat. Dissolved substances, such as nitrates, may be removed from discharge to downstream areas because of the increased infiltration.	Sediment and	High (gully erosion) (12) Moderate (runoff/ flooding) (12) Low (streambank erosion) (12)	Soil erosion, agricultural runoff	Nutrient management, terraces, grassed waterways, contouring, conservation cropping system, conservation tillage, and crop residue management	10 years (9)	Reseed and fertilize as needed. Check basins after large storm events and make necessary repairs.	NRCS available for assistance	Widely applicable.	Over application of fertilizer possible.	Traps storm water runoff and prevents it from reaching lowlands. Moderate decrease in runoff/ flooding. Slight increase in excess subsurface water. (12)		5% of original cost per unit (11)	Basin must be large enough to control the runoff from a 10-year storm without overtopping.		ftp://ftp- fc.sc.egov.usda.gov/NHQ/pr actice- standards/standards/638.pdi
Regional Detention	Large, man-made basin designed to capture and remove particulate matter. It generally has inlet and outlet structures to regulate flow from large drainage areas.	Sediment; nutrients; hydrologic flow	Moderate	Storm water runofl	Sediment forebay or f other form of pretreatment	50+ years	Low; Remove and dispose of sediment, trash and debris; repair erosion.	Minimum	Use for large drainage areas (≥ 1 acre), at storm sewer outfalls, and to collect overland flow.	Possible downstream warming low bacteria removal; West Nile Virus	Reduced peak flows, storage	Moderate	Low to moderate	Need available land area, can include sediment forebay.	OCDC, KCDC, City of Wyoming	
VEGETATED TREATME	NT (ex. constructed wetland, grassed swale)	1			· T	1	! T	· T	<u></u>	· T	· T	!	- ! - T	20/ of drainage area needs	! T	!
Constructed Wetland	Excavated basin with irregular perimeters and undulating bottom contours into which wetland vegetation is placed to enhance pollutant removal from storm water runoff.	Sediment, nutrients, bacteria	Moderate to high depending on season; 80% of total suspended solids (4) 50% of total phosphorous (4)	Storm water runoff	Sediment forebay or fother form of pretreatment	50+ years (1)	High; Remove and dispose of sediment, trash and debris; repair erosion.	Moderate to High	Significant land use requirement; needs appropriate soils, slope, and hydrology	Potential for nutrient release in winter months	Slows flow and reduces peak flow	Moderate to high; \$500 - \$1000 excluding purchase of land (3)	2% of capital cost/year (1)	2% of drainage area needs to be wetland for efficient pollutant removal. Harvesting may be necessary if plants are taking up large amounts of toxics. Needs supplement water to maintain water level.	Ottawa County Road Commission	http://www.deq.state.mi.us/d ocuments/deq-swq-nps- conw.pdf
Restored Wetland (NRCS practice 657)	Rehabilitation of a drained or degraded wetland where hydrology and the vegetative community are returned to their natural condition to the extent practicable. Provides natural pollution control by removing pollutants, filtering and collecting sediment, reducing both soil erosion and downstream flooding, and recharging groundwater supplies.		Moderate to high (depending on season); 80% of total suspended solids from sheet, rill, wind, or ephemeral gully erosion (4) 50% of total phosphorous (4).	Storm water runoff, soil erosion	Sediment forebay or other form of pretreatment. In agricultural areas cattle exclusion fencing, buffer/filter strip, grassed waterway		High; Remove and dispose of sediment, trash and debris, and repair eroded areas.	Moderate to High. Design and installation should be done by a professional	Site must have previously been a wetland	Can increase water temperature. Potential for nutrient release in winter months	Stores storm water and may reduce downstream runoff and flooding. Slows flow and reduces peak flow.	Low: \$200 cost to landowner if wildlife organization involved. Break tile and build berm. \$2,350/acre (scwmp	3% of original cost (11)	Many wetlands release water slowly into the ground which recharges groundwater supplies. One acre of wetland can store up to 1.5 million gallons of floodwater (enough to fill 30 Olympic size swimming pools) (EPA, 2002)	Barry County, Ionia State Park Recreational Area	ftp://ftp- fc.sc.eqov.usda.qov/NHQ/pr actice- standards/standards/657.pdf
Rain Gardens and other "Landscaping for Water Quality" techniques	Small, vegetated depressions used to promote infiltration and evapo-transpiration of storm water runoff. A rain garden combines shrubs, grasses, and flowering perennials in depressions that allow water to pool for only a few days after a rain. Landscaping for water quality involves planting native gardens in place of turf grass using native grasses, sedges, and wildflowers. Protects water quality, captures rainwater, reduces flooding, eases soi erosion, increases infiltration., and requires less fertilizer and water to thrive.	pollution, solids, chemicals, oils, salt, hydrologic	High; 75% - 90% of total suspended solids. (3)(8) 75% of total phosphorous. (8)	Storm water runoff, fertilizers	Mulching	early 1990s in	Low - Medium; Remove and dispose of sediment, trash, and debris, repair erosion, revegetate, and weed, water, and mulch, annually	Moderate, initial work to establish plant community. Aestheti maintenance after initial establishment of rain garden. Center for Environmental Study, Master Gardeners Program, West Michigan Environmental Action Council available for assistance.	Site specific, depends on soils. Use for drainage areas ≤ 5 acres (8), at storm sewer outfalls, and to collect overland flow. Highly suitable for residential areas,	Introduction of exotic/invasive plant species possible. Landowner may treat vegetation with herbicides or pesticides which could be carried via runoff to surface waters.	Will reduce the velocity of storm water runoff and increase infiltration	\$1,075 - \$12,355/ rain garden (dependent on surrounding land use)	Low. Assume \$100/year (similar to yearly landscaping maintenance)	Use native plant species. Soils adequate for infiltration are required. Cold climates may reduce evapotranspiration and infiltrative capacity. Practice not suitable for slopes greater than 20% (1). Pretreatment (sediment basin) needed in high sediment load areas. Not used in wellhead protection areas.	City of Grand Rapids, City of Holland, City of Grand Rapids, Kalamazoo Public Schools	
Vegetated Buffers or Filter Strips (NRCS Practice 393)	A buffer/filter strip is a vegetated area adjacent to a water body. The buffer/filter area may be natural, undeveloped land where the existing vegetation is left intact, or it may be land planted with vegetation. Practice protects water bodies from pollutants such as sediment, nutrients and organic matter, prevents erosion, provides shade, leaf litter, and woody debris. Buffer/filter strips often provide several benefits to wildlife, such as travel corridors, nesting sites and food sources.	pollutants, nutrients, thermal pollution	High to Moderate (streambank erosion) (12) Insignificant (runoff/ flooding) (12)	Runoff from parking lots, roof tops, and outflow from ponds, soil erosion, agricultural runoff	Conservation tillage in agricultural areas	10-20 years (9)	Low. Perform periodic inspections to identify concentrated flows and to verify that vegetative cover is maintaining its effectiveness. Address stream bank erosion if identified. Damaged areas should be repaired.	Low. NRCS available for assistance	Widely applicable		Will reduce the velocity of storm water runoff and increase infiltration.	Low. \$350/acre (10) \$250/ herbaceous acre (11) - CRP, EQIP	Low. \$10/acre (9)	Several researchers have measured >90% reductions in sediment and nitrate concentrations; buffer/filter strips do a reasonably good job of removing phosphorus attached to sediment, but are relatively ineffective in removing dissolved phosphorus (Gilliam, 1994).	Typical in counties of the LGRW.	http://www.deg.state.mi.us/documents/deg-swg-nps-bfs.pdf ftp://ftp-fc.sc.egov.usda.gov/NHQ/practice-standards/standards/393.pdf
Vegetated Buffers or Filter Strips (NRCS Practice 393)	A buffer/filter strip is a vegetated area adjacent to a water body. The buffer/filter area may be natural, undeveloped land where the existing vegetation is left intact, or it may be land planted with vegetation. This practice protects water bodies from pollutants such as sediment, nutrients and organic matter, prevents erosion. Buffer/filter strips often provide several benefits to wildlife, such as travel corridors, nesting sites and food sources.	Sediment and attached pollutants, nutrients, thermal pollution	High to Moderate (streambank erosion) (12) Insignificant (runoff/ flooding) (12)	Runoff from parking lots, roof tops, and outflow from ponds, soil erosion, agricultural runoff	Conservation tillage in agricultural areas	10-20 years (9)	Low. Perform periodic inspections to identify concentrated flows and to verify that vegetative cover is maintaining its effectiveness. Address stream bank erosion if identified. Damaged areas should be repaired.	for assistance	Widely applicable		Will reduce the velocity of storm water runoff and increase infiltration.	Low. \$350/acre (10) \$250/ herbaceous acre (11) - CRP, EQIP	Low. \$10/acre (9)	Several researchers have measured >90% reductions in sediment and nitrate concentrations; buffer/filter strips do a reasonably good job of removing phosphorus attached to sediment, but are relatively ineffective in removing dissolved phosphorus (Gilliam, 1994).	Typical in counties of the LGRW.	http://www.deg.state.mi.us/d ocuments/deq-swq-nps- bfs.pdf ftp://ftp- fc.sc.egov.usda.gov/NHQ/pr actice- standards/standards/393.pdf

BEST MANAGEMENT PRACTICE	Vegetative Best Managemen	POLLUTANT ADDRESSED	POLLUTANT REMOVAL EFFICIENCY	POTENTIAL SOURCES OF POLLUTANTS	ADDITIONAL BMPS TO COMPLETE TREATMENT TRAIN	EXPECTED LIFE SPAN	MAINTENANCE REQUIREMENTS	TRAINING REQUIREMENTS	APPLICABILITY TO	O ENVIRONMENTAL CONCERNS	HYDROLOGIC EFFECTS TO CONSIDER	INSTALLATION COSTS	OPERATION AND MAINTENANCE COSTS	SPECIAL CONSIDERATIONS	COMMUNITIES USING BMP	MDEQ/ NRCS LINK
Forested or Wooded Riparian Buffer (NRCS practice 390)	Forested or wooded areas adjacent to stream	Sediment and attached pollutants, nutrients, thermal pollution	High (sheet, rill, wind, streambank, soil mass movement, road bank/construction erosion; organics, fertilizers, pesticides, runoff/ flooding) (12)	Runoff from parking lots, roof tops, and outflow from ponds, soil erosion, storm water runoff	Filter strip	15 years (9)	Low. Perform periodic inspections to identify concentrated flows and to verify that vegetative cover is maintaining its effectiveness. Address stream bank erosion if identified. Damaged areas should be repaired.	Moderate to high. NRCS/MDA available for assistance	Widely applicable	Poor or lack of maintenance may cause increased erosion i trees fall into stream	Trees in the	Low. \$475/forrested acre (11) - CRP, EQIP		Keep south and west sides of streams wooded to provide shade. Several researchers have measured >90% reductions in sediment and nitrate concentrations; buffer/filter strips do a reasonably good job of removing phosphorus attached to sediment, but are relatively ineffective in removing dissolved phosphorus (Gilliam, 1994).	typical in counties of	ftp://ftp- fc.sc.egov.usda.gov/NHQ/pr actice- standards/standards/390.pdf
Two-stage channel design	A practical procedure that can be used to correctly size the stream channel and minimum bench widths for stable, effective discharge in agricultural drainage ditches. The bench of a two-stage ditch acts as a floodplain within the ditch to dissipate energy, reduce the erosive potential of high flow volumes, and reduce the shear stress on the bank toe. Two-stage ditches will have improved conveyance capacity, will be more self-sustaining, will create and maintain better habitat, and will improve water quality.	Sediment, hydrologic flow		Agricultural runoff	Filter/buffer strips		May require less maintenance then conventional ditches.	The Nature Conservancy has information available for assistance.	Widely applicable.		Two-stage ditches have improved conveyance capacity compared to conventional ditches and enhance drainage	additional costs are	s, May result in less annual O&M costs then conventional al ditches.	Evidence and theory both suggest that ditches prone to filling with accumulated sediment may require less frequent "dipping out" if constructed in a two-stage form.		
INFILTRATION (ex. infilt	ration basin)		1	1	I	I		1				1	1	A	1	1
Infiltration Trench	An excavated trench (3 - 12 feet deep), backfilled with stone aggregate, and lined with filter fabric. Infiltration trenches remove fine sediment and the pollutants associated with them.	Nutrients, sediment, metals, hydrologic flow (soluble pollutants - dependent on holding time)	High; 100% of total suspended solids(4); 60% of total phosphorous.		Sediment basin, buffer/filter strips, oil/grit separators	Short; 10 years or less (1)	Low to Moderate - Annual; Remove and dispose of sediment, trash and debris. Eroding or barren areas must be revegetated.	Moderate. Design and installation should be done by a professional		If storm water runoff contains n high amounts of soluble contaminants, groundwater contamination can occur.	Provides full control of peak discharges for small sites, provides groundwater recharge, may augment base stream flow, and allow infiltration.	storage (1)	9% of capital cost (*	Avoid areas with potential hazardous material contamination. Soils with high infiltration rates required. Cold climates may hinder infiltrative capacity, fines will clog pore space in soil, and practice is not suitable for steep slopes. Use as part of a "treatment train," where soluble organic substances, oils, and coarse sediment are removed prior to storm water entering the trench. A very high failure rate occurs with infiltration trenches if they are not maintained.	MDOT, Ottawa and Barry Counties	http://www.deq.state.mi.us/d ocuments/deq-swq-nps-it.pdf
Infiltration Pond	Water impoundment over permeable soils which received storm water runoff and contains it until it infiltrates the soils.	Nutrients, sediment, metals	High	Storm water runoff	Sediment forebay or other form of pretreatment	25+ years	Annual	Moderate	Site specific depends on soils	Potential to contaminate groundwater	May recharge groundwater	Moderate	Moderate	Avoid areas with potential hazardous material contamination	MDOT	http://www.deq.state.mi.us/d ocuments/deq-swq-nps- ib.pdf
Porous or Modular Pavement	Permeable asphalt or interlocking paving blocks providing infiltration. When the brick or concrete is laid on a permeable base, water will be allowed to infiltrate. Benefits include: removal of fine particulates and soluble pollutants; attenuation of peak flows; reduction in the volume of runoff; reduction in soil erosion; and groundwater recharge.		High; 95% TSS removal rate (2)	Storm water runoff	Vacuum sweeping, Subsurface Drains, Extended Detention Basin, Infiltration Basin.	10+ years	Moderate; Bi-nnual sweeping required. Periodically inspect, especially after large storms. If severe clogging occurs, may have to replace filtering material.	Low. Design and installation should be done by a professional	This practice should only be used on sites with soils whic are well or moderately well drained. Must use special materials for high traffic areas	h Potential risk to groundwater due to oils, greases, and other substances that may leak onto the pavement and leach into	Provides soil infiltration, attenuation of peak flows, reduction in the volume of runoff leaving the site and entering storm sewers, and groundwater recharge.	Moderate	Low to moderate	Pretreatment of storm water is recommended where oil and grease or other potential groundwater contaminants are expected. Avoid areas with potential hazardous material contamination	MDOT, East Grand Rapids - Reed's Lake boat launch	http://www.deq.state.mi.us/d ocuments/deq-swq-nps- pap.pdf
FILTRATION (ex. sand f	iii ci aj													Does not require a large		
Vegetated Swale or Bio- filtration	A broad, shallow channel consisting of dense vegetation and designed to accommodate concentrated flows without erosion.	Sediment	High; 75% - 80% of total suspended solids (2)(4); 50% of total phosphorous (4)	Storm water runoff	Native vegetation	20-50 years	Moderate; Remove and dispose of sediment, trash and debris, and repair erosion.	Moderate	Highly applicable to residential areas, not suited to steep slopes	Potential to contaminate groundwater	Slows flow	Low; \$0.50/square foot of swale (7)	\$0.03/square foot/year. (7)	land area. Should not be used in steep areas or well head areas. Soils adequate for infiltration required to discourage ponding on slopes less than 2%.	мрот	
Sand Filters	Area designed to hold and treat the first half inch of runoff discharging from an adjacent impervious area.	Sediment, Bacteria, Nutrients, Metals	Moderate; 83% TSS removal rate (2)	Storm water runoff		Yet to be determined	Moderate to high depending on amount of sediment	Moderate	Suitable for individual developments; requires less land and can be placed underground.	Will not filter soluble nutrients and toxics		Low to moderate	5% of initial construction costs (1)	BMP performance is still experimental		

BEST MANAGEMENT PRACTICE	DESCRIPTION	POLLUTANT ADDRESSED	POLLUTANT REMOVAL EFFICIENCY	POTENTIAL SOURCES OF POLLUTANTS	ADDITIONAL BMPS TO COMPLETE TREATMENT TRAIN	EXPECTED LIFE SPAN	MAINTENANCE REQUIREMENTS	TRAINING REQUIREMENTS	APPLICABILITY TO SITE	ENVIRONMENTAL CONCERNS	HYDROLOGIC EFFECTS TO CONSIDER	INSTALLATION COSTS	OPERATION AND MAINTENANCE COSTS	SPECIAL CONSIDERATIONS	COMMUNITIES USING BMP	MDEQ/ NRCS LINK
Cattle Exclusion (NRCS practices: Use Exclusion (472), Fence (382))	Fencing to exclude cattle from waterbodies and protect streambanks. Fencing prevents cattle from trampling banks, destroying vegetation, depositing waste in the stream, and stirring up sediment in the streambed.	Sediment and attached pollutants, nutrients, pathogens	Moderate to high (12)	Livestock access, animal manure	Buffer/filter strip, alternative water sources for livestock, planned grazing system, stream crossing and livestock access	20 years	Repair fence as needed. Remove off-stream watering systems in the winter, if needed.	NRCS available for assistance	Widely applicable	Increased grazing in confined areas may reduce vegetative cover		\$1.90/ft of fence (9) EQIP (use exclusion) WHIP (fence)	\$0.05/ft of fence (9)	Additional BMPs (e.g. Buffer/Filter Strips) are needed to prevent animal waste runoff from entering the stream.	Typical in counties of the LGRW (e.g. Barry County)	ftp://ftp- fc.sc.egov.usda.gov/NHQ/pr actice- standards/standards/472.pd ftp://ftp- fc.sc.egov.usda.gov/NHQ/pr actice- standards/standards/382.pd
Agricultural Waste Storage Facility (313)	A waste storage impoundment that protects water bodies from manure runoff by storing manure until conditions are appropriate for field application. Several options exist including an earthen storage pond, above or below ground tank, pit underneath a confinement facility, or a sheltered concrete slab area. Allows for field application when conditions are right. Field application cuts fertilizer costs and reduces nutrient losses.	Nutrients,	Moderate (organics and fertilizers) (12)	Animal manure	Cattle exclusion fencing, roof runoff management, diversion, Comprehensive Nutrient Management Plan (CNMP)	15 years (15)	Inspect storage structures for leaks or seepage periodically and make necessary repairs. Repair any damaged fences immediately. Empty storage structure twice a year.	NRCS available for assistance	Widely applicable	Leaks or seepage of the structure could add nutrients and bacteria to downstream water bodies via runoff.		Approximately \$10,000 - 250,000 (14) - (12) - EQIP	\$250 - 1,000 maximum (14)	Storage period should be determined by manure use schedule and application rates.	Typical in counties of the LGRW (e.g. Barry County, Ottawa County)	ftp://ftp- fc.sc.egov.usda.gov/NHQ/pr actice- standards/standards/313.pdi
Alternative Water Sources (Watering Facility (614), Water Well (642))	A readily available source of clean drinking water for cattle located away from water bodies Reduces the direct deposition of cattle waste into water bodies by changing animal behavior through providing alternate drinking water.	Sediment and attached pollutants, nutrients, pathogens		Livestock access, animal manure	Cattle Exclusion Fencing, buffer/filter strip, planned grazing system, stream crossing and livestock access	water well (15)	Watering facility: check for materials in the trough which may restrict the inflow or outflow system; check for leaks and repair immediately; check the automatic water level device to insure proper operation. Water well: create a maintenance plan including a log of identified problems, corrective actions taken, etc.	NRCS available for assistance	Widely applicable	Depending on the structure, it may not protect watercourse if contiguous with it.	Diversion of water	\$1,050 / water facility (11) - EQIP	2% original cost (watering facility) / (11) 1% original cost (water well) (11)	Areas adjacent to source that will be trampled by livestock should be graveled, paved, or otherwise treated to provide firm footing and reduce erosion.	Typical in counties of the LGRW (e.g. Barry County, Ottawa County)	ftp://ftp- fc.sc.egov.usda.gov/NHQ/pr actice- standards/standards/614.pdf ftp://ftp- fc.sc.egov.usda.gov/NHQ/pr actice- standards/standards/642.pdf
Cover Crop (340)	A crop of close-growing, grasses, legumes, or small grain grown primarily for seasonal protection and soil improvement. It usually is grown for 1 year or less, except where there is permanent cover as in orchards. Temporarily protects ground from wind / water erosion, adds organic matter to the soil, recycles or holds nutrients, improves soil tilth, reduces weed competition, retained soil moisture by acting as a mulch, and fixes atmospheric nitrogen (legumes).	Sediment and attached pollutants, nutrients, chemicals (pesticide), hydrologic flow, chloride (salt)	High (sheet, rill, wind, gully irrigation induced erosion, runoff/ flooding) (12) Moderate (salts, organics, fertilizers, pesticides) (12)	Soil erosion, agricultural runoff	Pest management, nutrient management, conservation crop rotation, crop residue management	1 year (9)	Plant cover crop annually, kill cover crop in the spring, restrict grazing if necessary	NRCS available for assistance	Widely applicable. Consider soil type, slopes, etc.	Requires pest management (IPM) to ensure that pesticide use is not increased	Significant decrease in runoff/ flooding, moderate reduction in excess subsurface water	\$30/acre (9) - EQIP	\$0/acre (9)	Requires livestock for feed use or market for hay	Organic Farmers of the LGRW	ftp://fftp- fc.sc.egov.usda.gov/NHQ/pr actice- standards/standards/340.pdf
Windbreak/Shelterbelt Establishment (380)	Rows of trees and shrubs that protect areas from wind and provide food and cover for wildlife. Reduces wind erosion, conserves energy, provides food and cover for wildlife, and beautifies a farmstead.	Sediment and attached pollutants	High (wind erosion only) (12)	Soil erosion	Cattle exclusion fencing	15 years (9)	Control competing vegetation, inspect regularly	NRCS available for assistance	Widely applicable	Over application of herbicides or pesticides possible	Will reduce storm water runoff and increase infiltration	\$150 - 1,000 seedlings (13) - EQIP, WHIP	10% of original cost (11)	Consider if the mature windbreak will cast a shadow over the driveway or nearby road, prolonging icy conditions.		ftp://ftp- fc.sc.egov.usda.gov/NHQ/pr actice- standards/standards/380.pdf
Conservation Cover (327)	Establishing and maintaining perennial vegetative cover to protect soil and water resource on land retired from agricultural production. Reduces erosion and increases soil tilth due to perennial cover establishment of species adapted to site. Improves water quality when nutrients and sediments are retained on the field. Reduces weed sources. Wildlife food, cover, and water needs will be met.	hydrologic flow,	High (sheet, rill, wind, gully erosion; runoff/ flooding) Moderate (streambank erosion) (12)	Soil erosion, agricultural runoff	Upland wildlife habitat management, wildlife food plot, tree/shrub establishment	10 years (15)	If necessary, mow during the establishment period to reduce competition from annual weeds. Annual mowing of the conservation cover stand for general weed control is not recommended. Control noxious weeds.	NRCS available for assistance	Widely applicable	Over application of herbicides or pesticides possible	Significant decrease in runoff/ flooding, moderate reduction in excess subsurface water	\$260 - 460/acre (9) - CRP, EQIP	\$35/ acre (9)	Use of fertilizers, pesticides and other chemicals should not compromise the intended purpose. Maintenance practices and activities should not disturb cover during the primary nesting period for grassland species in each state.	Typical in counties of the LGRW (e.g. Barry and Ionia County)	ftp://ftp- fc.sc.egov.usda.gov/NHO/pr actice- standards/standards/327.pdf
Pasture and Hayland Planting (512)	Planting grass and legumes to reduce soil erosion and improve production in a low-producing pasture, hayfield, or eroding cropfield. Reduces soil erosion by wind and/or water, extends length of the grazing season, provides cover and habitat for wildlife, protects water quality by filtering runoff and increasing filtration, and adds organic matter to the soil	Sediment and attached pollutants, nutrients, chemicals (pesticides), hydrologic flow	High (sheet, rill, wind ephemeral gully, irrigation inducted erosion; fertilizers, pesticides, runoff/ flooding) (12)	Soil erosion, agricultural runoff	Nutrient management, pest management, prescribed grazing	10 years (9)	Mow weeds, apply fertilizer and herbicide as needed	NRCS available for assistance	Widely applicable. Consider soil type	Over application of herbicides or pesticides possible	Significant decrease in runoff/flooding and excess subsurface water	\$75/acre (11) - EQIP, CRP	5% of original cost per unit (11)	Do not mix warm and cool season grasses in the same pasture. Choose species that will help reduce the use of pesticides and herbicides.	Typical in counties of the LGRW	ftp://ftp- fc.sc.egov.usda.gov/NHQ/pr actice- standards/standards/512.pdf

BEST MANAGEMENT PRACTICE	Vegetative Best Managemen	POLLUTANT ADDRESSED	POLLUTANT REMOVAL EFFICIENCY	POTENTIAL SOURCES OF POLLUTANTS	ADDITIONAL BMPS TO COMPLETE TREATMENT TRAIN	EXPECTED LIFE SPAN	MAINTENANCE REQUIREMENTS	TRAINING REQUIREMENTS	APPLICABILITY TO SITE	ENVIRONMENTAL CONCERNS	HYDROLOGIC EFFECTS TO CONSIDER	INSTALLATION COSTS	OPERATION AND MAINTENANCE COSTS	SPECIAL CONSIDERATIONS	COMMUNITIES USING BMP	MDEQ/ NRCS LINK
Critical Area Planting (342)	Establishing permanent vegetation on sites that have or are expected to have high erosion rates, and on sites that have physical, chemical or biological conditions that prevent the establishment of vegetation with normal practices. Stabilizes areas with existing or expected high rates of soil erosion by water and wind. Restores degraded sites that cannot be stabilized through normal methods.	Sediment and attached pollutants, salts	High (sheet, rill, wind, gully, streambank, soil mass movement, road bank/construction erosion) (12) Moderate (salts) (12)	Soil erosion, agricultural runoff	Diversions, riprap, grade stabilization structures, filter/buffer strips,	10 years (9)	Periodic burning (if needed), prohibit grazing until year 2, prevent overgrazing, inspect after severe storms	NRCS available for assistance	Widely applicable. Consider soil type, slopes, etc. Apply or any area which is difficult to stabilize.	Use of non-native or invasive species is not recommended. Use by recreational users may degrade area.	Will reduce the velocity of storm	\$460 - \$815/acre (2001 and 2004) EQIP, WHIP, WRP	1 % of original cost per unit (11)	Use native plants with low long term maintenance requirements. Soil tests should be done to determine the nutrient and pH content of the soil.	Typical in counties of the LGRW (e.g. Ottawa County)	ftp://ftp- fc.sc.egov.usda.gov/NHQ/pr actice- standards/standards/342.pd
Grassed Waterway (412)	The establishment and shaping of grass in a natural drainageway to prevent gullies from forming. Vegetation filters runoff and provides cover for wildlife.	Sediment and attached pollutants, hydrologic flow	High (ephemeral gully erosion) (12) Low (reduction in classic gully erosion, runoff/ flooding) (12)	Soil erosion, agricultural runoff	Grade stabilization structure	10 years (9)	Yearly regrading, reseeding, and inspection of subsurface drain and related outfall may be needed. Fertilize as needed and mow periodically.	Design and installation should be done by a professional. NRCS available for assistance.	Widely applicable	Better conveyance enhances storm water runoff velocities and possible contamination to surface waters	Drainageway directs runoff to an outlet	\$800/acre (without tile) (9) \$4,500/acre (with tile) (9) CRP, EQIP	\$105/acre (9)	A nurse crop, temporary cover or mulching may be necessary until permanent cover is established. Avoid planting end rows along the waterway.		ftp://ftp- fc.sc.egov.usda.gov/NHQ/pr actice- standards/standards/412.pdf
Diversion (362)	Earthen embankment that directs runoff water from a specific area. Reduces soil erosion on lowlands. Vegetation filters runoff water and provides cover. Allows better crop growth on bottomland soils.	Sediment, nutrients, chemicals (pesticide), hydrologic flow	High (ephemeral gully erosion, runoff/ flooding) (12) Moderate (classic gully, soil mass movement, road bank/construction erosion) (12) Low (sheet, rill, streambank erosion, organics, fertilizers, pesticides) (12)	Soil erosion, agricultural runoff	Sediment basin or stabilized outlet, buffer/filter strip, nutrient management	10 years (9)	Clear outlet of debris, maintain vegetative cover on ridge, ridge repair, fertilize as needed	Design and installation should be done by a professional	Widely applicable. Do not build in high sediment producing areas unless other conservation measures are installed.	Over application of fertilizer possible	Catches storm water runoff and prevents it from reaching lowlands, reducing runoff velocity and increasing infiltration	\$5.00/ft (9) - EQIP	\$0.26/ft (9)	Important as SESC in developing sites. Each diversion must have an outlet.	?	ftp://ftp- fc.sc.egov.usda.gov/NHQ/pr actice- standards/standards/362.pdf
OTHER			pesticiaco) (12)			l .										
Abandoned Well Closures (Well Decommissioning (351))	Well decommissioning seals an abandoned well. Abandoned wells are wells which are no longer in use or are in such disrepair that groundwater can no longer be obtained from them. Benefits include: a) Reduces the risk of groundwater contamination, b) Eliminates the risk of injury, c) Avoids liability under the Michigan Polluter Pay Law	Sediment and attached pollutants, chemicals, nutrients, chloride (salt), pathogens, hydrocarbons	High (13) ∌	Agricultural runoff, hazardous waste spills	Stand alone practice	20 years (9)		High: Professional required. A drilled, deep bedrock and artesian wells should be closed by a licensed well driller. Farm'A*Syst available for assistance.	Widely applicable.	Groundwater contamination may already be present.	Will prevent surface water from reaching the groundwater supply via the abandoned well.	\$50 - \$500/closure - Michigan Groundwater Stewardship Program, MDA, EQII	Low (14) P	Filling a well with rocks/gravel won't reduce the groundwater contamination risk. Technical assistance is required to properly close an abandoned well.	Spring Lake Village, lonia and Barry County	ftp://ftp- fc.sc.egov.usda.gov/NHQ/pr actice- standards/standards/351.pdf
Streambank and Shoreline Protection (580)	Treatment(s) used to stabilize and protect banks of streams or constructed channels, and shorelines of lakes, reservoirs, or estuaries, such as bioengineering, rip rap, geotextile materials, and vegetative techniques.	Sediment and attached pollutants	High (streambank erosion, soil mass movement) (12)	Soil erosion	Livestock exclusion, prescribed grazing, buffer/filter strips, diversions, or additional sediment control measures.	20 years (9)	Site inspections conducted to ensure the stream bank structures are staying in place within the first few months of installation and following storm events.		Widely applicable: site-specific practices will depend on soil type, slope of the bank, river gradient, flow, and uses of the watercourse.		Maintains the capacity of the stream channel.	EQIP: 50% cost share (15)	10% of original cost (11)	Since each reach of a watercourse is unique, stream bank protection techniques must be selected on a site-by-site basis; the specifications for each technique differ. Utilize vegetative species that are native and/or compatible with local ecosystems.	Barry County Drain Commission	ftp://ftp- fc.sc.egov.usda.gov/NHQ/pr actice- standards/standards/580.pdf
Dam Removal	Releases made from dams commonly cause a decrease in summer temperatures and an increase in winter temperatures downstream. Dam removal benefits fish by: (a) removing obstructions to upstream and downstream migration; (b) restoring natural riverine habitat; (c) restoring natural seasonal flow variations; (d) eliminating siltation of spawning and feeding habitat above the dam; (e) allowing debris, small rocks and nutrients to pass below the dam, creating healthy habitat; (f) eliminating unnatural temperature variations below the dam; and (g) removing turbines that kill fish.	Thermal pollution		Dam	Will depend on the effects of dam removal. Streambank stabilization may be necessary.	Permanent		Design and removal should be done by a professional	unsafe dams and	Recent studies show removal of small dams can have limited negative environmental impacts while restoring stream functions. Negative impacts include elevated sediment loads in addition to transformed channel morphology and hydrology. Dam removal may also wreak havoc on already highly disturbed ecosystems. Reservoirs that store high levels of contaminants may release them following dam removal, creating a contaminant plume.		A number of studies (River Alliance of Wisconsin 2003, American Rivers 2003) have found removal costs to be up to 1/3 to 1/5 the cost of repair, especially when the benefits of the dam are minor. Funding sources include: private or community foundation funding, environmental grants, and state or federal assistance programs.	None	operation and maintenance costs tend to increase as a dam ages. These increased costs, combined	County Big Rapids Dam on Muskegon River,	

BEST MANAGEMENT PRACTICE	DESCRIPTION	POLLUTANT ADDRESSED	POLLUTANT REMOVAL EFFICIENCY	POTENTIAL SOURCES OF POLLUTANTS	ADDITIONAL BMPS TO COMPLETE TREATMENT TRAIN	EXPECTED LIFE SPAN	MAINTENANCE REQUIREMENTS	TRAINING REQUIREMENTS	APPLICABILITY TO SITE	ENVIRONMENTAL CONCERNS	HYDROLOGIC EFFECTS TO CONSIDER	INSTALLATION COSTS	OPERATION AND MAINTENANCE COSTS	SPECIAL CONSIDERATIONS	COMMUNITIES USING BMP	MDEQ/ NRCS LINK
Stabilized Outlets	of outlets include: Conveyance Outlets		Dependent on type of outlet used.	Storm water runoff, streambank erosion	Riprap, if needed	Dependent on type of outlet used.	Requires regular maintenance.	Stabilized outlets should be designed by a registered professional engineer.	Widely applicable.	If outlets are not maintained, excessive sediment may be introduced to surface waters downstream.	Stabilized outlets will reduce the velocity of discharge water to non-erosive levels.	Dependent on type of outlet used.	Dependent on type of outlet used.	If the outlet is a county or intercounty drain, permission to discharge must be obtained from the drain commissioner or drain board. The actual structure may require a MDNR permit if the outlet is in a watercourse or if wetlands are impacted.		http://www.deq.state.mi.us/d ocuments/deq-swq-nps- so.pdf
Emergency Spill Kit	Kit materials capture oil, gasoline, and diesel	Hydrocarbons		Boat spill					Applicable to lakes							
Pond Construction and Management (378)	embankment or by excavating a pit or dugout. Excavated ponds are made for conditions which require a small supply of water such as a	chemicals, nutrients, flooding	streambank erosion, flooding)	Storm water runoff	Slope/Shoreline Stabilization, Seeding, Mulching, Sodding, Pond Sealing or Lining	20 years (2004)	Moderate to High	Design and installation should be done by a professional	Depends on soil suitability. Build ponds in areas where the water supply is adequate for the intended use.	Purple loosestrife (Lythrum salicaria) is an undesirable, exotic perennial which often becomes established in disturbed sites.	Ponds can be used for storm water management.		1% of original cost per unit (2001)	For excavated ponds, consider drainage characteristics, including depth to the water table. For embankment ponds, consider upstream drainage characteristics and how the pond will affect downstream flows, temperatures, etc.	City of Grand Rapids, Barry and Ionia Counties	
Composting Facility (317)	A facility for the biological stabilization of waste organic material. The purposed is to treat waste organic material biologically by producing a humus-like material that can be recycled as a soil amendment and fertilizer substitute or otherwise utilized in compliance with all laws, rules, and regulations. Keeps organic debris out of surface waters and away from floodplains, which helps prevent the depletion of oxygen in surface waters.	Nutrients, low DO		Upland source (yard trimmings and kitchen waste)	NA	15 years / composting facility (2004)	Composting requires proper aeration, watering and mixing in order to result in a useable end-product. Product can be sold, delivered, and applied.	Design and installation should be done by a professional	Widely applicable to dense residential or riparian sites. Soils, topography and climate will all affect the types of composting options available.	and correctly applied as fertilizer. Runoff from compost application may contaminate		\$37,000/ composting facility (2004)	Annual Maintenance \$370/ year /composting facility (2004)	: As of March 27, 1993, yard waste collected or generated in Michigan on public property is banned from land fills and incinerators.	Green Rock Landscape Supply, Rockford Phoenix Resources, Alto Eagle Ottawa Leather Company, Grand Haven	
Mulching (484)	wood fiber, wood chips or other acceptable	Sediment and attached pollutants	Low to moderate	Soil erosion	Seeding, Soil Management, Fertilizer Management, Grading Practices, Diversions (if needed).	1 year (2004)	Low - inspect mulched areas following storm events to ensure mulch has stayed in place.	Low	Widely applicable	None known.	Seeded area will eventually reduce the velocity and increase infiltration of storm water runoff.	\$3.00/acre (2001)	Annual Maintenance 100% of original cos per unit (2001)	Mulch should be applied immediately after seeding has occurred. Anchoring of the mulch should be done immediately after the mulch is applied.	Barry County Drain Commission	
Riprap		Sediment and attached pollutants	High	Soil erosion, agricultural runoff	Filters. (Riprap is often used in making Stabilized Outlets, in Stream bank Stabilization, etc.)	10 + years (SV)	Low - Periodically inspect underlying fabric, adjust and add riprap as needed.	technical resources	Widely applicable: Riprap is most often used in stream banks, on slopes, and at outlets.	Potential to cause additional erosion downstream.	Reduces downcutting and lateral cutting of erosive flow velocities. Typically not a significant velocity reducer.			MDEQ permit may be required if placed in waters of the state. Explore downstream impacts.	Road Commissions	

- Evaluation of Best Management Practices for MDOT, 2002.
 Source Area and Regional Storm Water Treatment Practices, Bannerman.
- Guidebook of Best Management Practices for Michigan, MDEQ, 1996.
 National Pollutant Removal Performance Database, EPA, June 2000.

- National Pollutant Removal Performance Database, EPA, June 2000.
 Hydro-Compliance Management, Inc.
 Governmental Accounting Focus, Estimating Useful Lives for Capital Assets.
 Rouge River National Wet Weather Demonstration Project, 2001
 Rain Gardens, Beautiful Solutions for Water Pollution, Rain Gardens of West Michigan, 2003
 Field Office Technical Guide, Section 1 Cost Information (draft). USDA-NRCS-MICH, 2004
 Michigan Area 3 Component Data, USDA-NRCS, June 2003

- 11. [Michigan] Sample County Practice and Maintenance Costs, USDA-NRCS-MICH, 2001
- 12. Conservation Practice Physical Effect Worksheet[s]. USDA-NRCS, 2004
- 13. Information provided by the Technical Committee of the Lower Grand River Watershed Project, 2004
- 14. Personal Communication with District Conservationalist of the NRCS Grand Rapids Service Center, 2004
- 15. FY04 Michigan EQIP Statewide Eligible Practice List, Land Management Practices (Incentive Payments), USDA-NRCS-MICH, 2004

APPENDIX G MANAGERIAL BEST MANAGEMENT PRACTICES

BEST MANAGERIAL PRACTICES	DESCRIPTION	BENEFIT	POLLUTANT ADDRESSED	POTENTIAL SOURCES OF POLLUTANTS	ENVIRONMENTAL IMPACTS AND SPECIAL CONCERNS	COMPARATIVE COSTS	COMMUNITIES USING BMP	MDEQ/ NRCS LINK
AGRICULTURAL			Ī		Τ	Ī	I	
Crop Residue Management (329A-C, 344), includes no till, mulch till, ridge till, and seasonal		Ground cover prevents soil erosion and protects water quality. Residue improves soil tilth and adds organic matter to the soil as it decomposes. Fewer trips and less tillage reduces soil compaction.	Sediment and attached pollutants	Agricultural runoff, soil erosion	Consider if crop will produce enough residue. Planning for residue cover should begin at harvest. Time, energy, and labor savings are possible with fewer tillage trips. Equipment for specialized tillage techniques needed. Additional chemical treatments may be necessary to control pests. Assistance available from USDA office or Conservation District. No local government controls in place. Crop reside reduces the velocity of storm water runoff and improves infiltration	\$28-36/acre (includes no-till and strip till, ridge till) (11). Maintenance costs are 100% of original cost (11). Environmental Quality Incentive Program (EQIP) (for mulch till, ridge till, and seasonal residue management). Equipment rental or purchase \$40+ per acre. Consider costs for pest control.	Typical in Counties of the Lower Grand River Basin (e.g. Kent County)	ftp://ftp-fc.sc.egov.usda.gov/NHQ/practice-standards/standards/329a.pdf ftp://ftp-fc.sc.egov.usda.gov/NHQ/practice-standards/standards/329b.pdf ftp://ftp-fc.sc.egov.usda.gov/NHQ/practice-standards/standards/329c.pdf ftp://ftp-fc.sc.egov.usda.gov/NHQ/practice-standards/standards/344.pdf
Conservation Crop Rotation (328)	A sequence of crops designed to provide adequate organic residue for maintenance or improvement of soil tilth and fertility. Other BMPs to use include nutrient and pest management, buffer/filter strips, cover crops	Reduces sheet, rill, and wind erosion Maintains or improve soil organic matter content Manages the balance of plant nutrients Improves water use efficiency Manages saline seeps Manages plant pests (weeds, insects, and diseases) Provides food and cover for wildlife Reduces fertilizer needs and may reduce pesticide needs	Sediment and attached pollutants	Soil erosion, agricultural runoff	Rotations that include grains, such as corn, or meadow provide better erosion control. Where excess plant nutrients or soil contaminants are a concern, utilizing deep rooted crops or cover crops in the rotation can help recover or remove the nutrient or contaminant from the soil profile. Over application of fertilizer or pesticide is possible. Plants will reduce the velocity of storm water runoff and increase infiltration.	\$4.00/acre (11) - EQIP	Typical in Counties of the Lower Grand River Basin (e.g. Kent County)	ftp://ftp- fc.sc.egov.usda.gov/NHQ/practice- standards/standards/328.pdf
Planned Grazing System	Pasture is divided into two or more pastures or paddocks with fencing. Cattle are moved from paddock to paddock based on forage availability and livestock nutrition needs. Other BMPs to use include alternative water source, cattle exclusions, nutrient management, and soil testing	Improves vegetative cover, reduces erosion, and improves water quality by reducing sediment and nutrient runoff. Rotating also evenly distributes manure and nutrient resources.	Sediment and attached pollutants, nutrients, pathogens	Soil erosion, agricultural runoff	Keep fencing secure. Apply fertilizer and nutrients according to soil tests, mow or hay paddocks if needed, & update rotation schedule if needed. Practice is widely applicable. Consider adequacy of the mix of grass and legumes to meet livestock needs. Sediment and nutrient runoff is not eliminated just reduced. This practice will increase harvest efficiently and help ensure adequate forage throughout the grazing season.	EQIP can fund establishment. \$25/acre for maintenance (14)	Typical in Counties of the Lower Grand River Basin (e.g. Kent County)	
Irrigation Water Management (449)	Determining and controlling the rate, amount, and timing of irrigation water in a planned and efficient manner. Other BMPs to use include Nutrient management, pest management, crop residue management, soil conservation measures	minimize losses of water and discharge	Sediment and attached pollutants, nutrients, hydrologic flow	Agricultural runoff	Poor management may allow the loss of dissolved substances from the irrigation system to surface or groundwater. There is an insignificant reduction in runoff/ flooding and slight reduction in excess subsurface water. Consider the effects irrigation water has on wetlands, water related wildlife habitats, riparian areas, cultural resources, and recreation opportunities.	EQIP can fund establishment.	Typical in Counties of the Lower Grand River Basin (e.g. Kent County)	ftp://ftp- fc.sc.egov.usda.gov/NHQ/practice- standards/standards/449.pdf
Contour strip cropping (585)	Crop rotation and contouring combined in equal-width strips of corn or soybeans planted on the contour and alternated with strips of oats, grass, or legumes. Other BMPs to use include field border, fertilizer management, grassed waterways.	Meadow slows runoff, increases infiltration, traps sediment and provides surface cover. Ridges formed by contoured rows slow water flow which reduces erosion. May reduce fertilizer costs.	Sediment and attached pollutants, hydrologic flow	Agricultural runoff, soil erosion	Keep strip widths consistent from year to year. Make adjustments in rotation schedule if needed. Over application of fertilizer possible, if used. Will reduce the velocity of storm water runoff and increase infiltration. Strip cropping is not as effective if crop strips become too wide, especially on steep slopes.		Typical in Counties of the Lower Grand River Basin (e.g. Kent County)	ftp://ftp- fc.sc.egov.usda.gov/NHQ/practice- standards/standards/585.pdf
Contour farming (330)	Hillsides are cultivated and planted in rows along the hillside contour, not up and down the hill. Crop row ridges on the contour create hundreds of small berms. Other BMPs to use include field border, grassed waterways, and terraces or strip cropping if needed.	transport of sediment and other water- borne contaminants. Ridges, built by tilling and planting on the contour, slow water flow and increase infiltration, which	Sediment and attached pollutants, hydrologic flow	Agricultural runoff, soil erosion	To avoid having to lay out new contour lines every year, establish a narrow permanent strip of grass along each key contour line. All tillage and planting operations should be performed parallel to the key contour line. Contour farming will reduce the velocity of storm water runoff, increase infiltration, moderately decrease runoff/ flooding, and slightly increase excess subsurface water. Contouring is less effective in preventing soil erosion on steeper or longer slopes.	\$40.00/pero (9)	Typical in Counties of the Lower Grand River Basin (e.g. Kent County)	ftp://ftp- fc.sc.egov.usda.gov/NHQ/practice- standards/standards/330.pdf

BEST MANAGERIAL PRACTICES	DESCRIPTION	BENEFIT	POLLUTANT ADDRESSED	POTENTIAL SOURCES OF POLLUTANTS	ENVIRONMENTAL IMPACTS AND SPECIAL CONCERNS	COMPARATIVE COSTS	COMMUNITIES USING BMP	MDEQ/ NRCS LINK
Pest Management (595)	Crops are scouted to determine type of pests and the stage of development. The potential damage of the pest is then weighed against the cost of control. Finally, if pest control is economical, all alternatives are evaluated based on cost, results, and environmental impact. Precaution is taken to keep any chemicals from leaving the field by leaching, runoff, or drift. Other BMPs include buffer/filter strips, crop rotation, and erosion control measures.	Treatments tailored for specific pests on identified areas of a field prevents overtreatment of pests. Using fewer chemicals improves water quality.	Chemicals (Pesticide)	Agricultural runoff	Continual scouting to best identify pests and control methods. Keep records to track costs and chemical application. Calibrate spray equipment. Consider which soils on farm are likely to leach pesticides. Consider pest control alternatives.	100% of cost/unit (11) - EQIP		ftp://ftp- fc.sc.egov.usda.gov/NHQ/practice- standards/standards/595.pdf
Nutrient Management (590) Comprehensive Nutrient	Crop nutrient needs are determined after a soil test, setting realistic yield goals, and taking credit for contributions from previous years' crops and manure applications, crop nutrient needs are determined. Nutrients are then applied at the proper time by the proper application method. Nutrient sources include animal manure, sludge, and commercial fertilizers Other BMPs include manure testing, soil testing, soil conservation measures, waste management system, waste storage facility, and waste utilization.	supplies nutrients for plant production. It also reduces the potential for nutrients to infiltrate into water supplies by preventing over application. Correct manure and sludge application on all fields can improve soil tilth and organic matter. It is very applicable on Concentrated Animal Feeding	Nutrients	Agricultural runoff, over application of fertilizers.	Maintenance requirements: Perform a periodic plan review to determine necessary adjustments Protect nutrient storage facilities from weather and accidental leakage/spillage Calibrate application equipment and document application rates Spread wastes away from waterbodies on an adequate land base and incorporate ASAP Analyze manure and other organic waste for nutrient content before field application and determine appropriate application rate Test soils once every three years according to Extension recommendations Establish a winter cover crop if nitrogen leaching is possible due to poor crop yield CONMP must be developed by a trained technical person (service provided by NRCS or Conservation District). Consider potential groundwater contamination - proximity to waterbodies critical.	\$5.00/acre (9) - EQIP (Costs associated with waste water collection, soil testing, Integrated Crop Management are low but have a high start up.)	Typical in Counties of the Lower Grand River Basin (e.g. Kent County)	ftp://ftp- fc.sc.egov.usda.gov/NHQ/practice- standards/standards/590.pdf
Organic Farming Practices	Organic farming differs from other farming systems in a number of ways. It favors renewable resources and recycling, returning to the soil the nutrients found in waste products. Where livestock is concerned, meat and poultry production is regulated with particular concern for anima welfare and by using natural foodstuffs. Organic farming respects the environment's own systems for controlling pests and disease in crops and livestock. Organic farmers use a range of techniques that help sustain ecosystems and reduce pollution. Other BMPs include filter/buffer strips, crop rotation, organic manuring, composting, limited chemical intervention, conservation of wildlife and natural habitats, management of livestock, recycling of organic materials.	Organic farming conserves biodiversity, provides a wide range of habitats, saves energy, improves soil fertility, and protects groundwater and surface waters from nitrates, phosphates, and pesticides. Organic food is grown without using any synthetic pesticides, herbicides, insecticides, fungicides, fertilizers, or hormones.		Agricultural runoff	Organic farming methods are usually more labor intensive than conventional farming, so the cost o organic farming will usually be more.	EQIP funds supporting practices such as cover crops, conservation crop rotation, nutrient management, pest management.	Roseland Organic Farms, Cassopolis, MI FOGG Organic Farmers and Market, Leslie, MI	
Soil testing of cropland	For proper management, a soil test for available nutrients should be made every 3 5 years. Use Integrated Crop Management (ICM)			Agricultural runoff.	Soil should be tested to determine nutrient levels. Care should be taken to not add nutrients already present in adequate levels. Soil testing should be undertaken by lab or local MSU Extension office. Proper collection of a soil sample is important. Accuracy of analysis depends on the collection of a representative soil sample.	Management (ICM). Typically a yearly expense. Low cost technique of monitoring soil. EQIP	Prevalent on agricultural land in rural communities. Typical in Counties of the Lower Grand River Basin.	

Managerial Best Mana	agement Practices							
BEST MANAGERIAL PRACTICES	DESCRIPTION	BENEFIT	POLLUTANT ADDRESSED	POTENTIAL SOURCES OF POLLUTANTS	ENVIRONMENTAL IMPACTS AND SPECIAL CONCERNS	COMPARATIVE COSTS	COMMUNITIES USING BMP	MDEQ/ NRCS LINK
Agriculture Incentive Programs	Farm Bill programs that offer a rental payment to landowners that agree to take environmentally sensitive areas out of production. Continuous sign-ups for these programs are available to riparian and wetland areas. Rental rates are set by county boards.	Creates incentive for landowners to conserve riparian buffers, wetlands, and wildlife habitats.	Sediment, nutrients, hydrologic flow, pathogens chemicals (pesticides)	, Agricultural runoff	Property enrolled in Farm Bill programs are not protected in perpetuity. Fertilizer cannot be applied to areas under contract. In some cases, land values or crop yields may discourage landowners to use these incentive programs.	In some counties soil rental rates can be very high.		http://www.nrcs.usda.gov/programs
ZONING ORDINANCES/LAND USE		L						
Development/Enforcement of Storm Water Ordinance	Ordinance can provide for the regulation and control of storm water runoff; provide for storm water permits and the procedures and standards for the issuance; provide regulations for the inspection, sampling and monitoring of storm water and other discharges; establish performance and design standards for storm water management in specified zones of the Township/Municipality; and provide penalties for the violations of the ordinance.	Storm water runoff rates and volumes are controlled in order to protect floodways. Controls soil erosion and sedimentation; minimizes deterioration of existing watercourses, culverts, bridges, etc.; and encourages groundwater recharge.	Sediment and attached pollutants, hydrologic flow	Storm water runoff	Establishing storm water management control will minimize storm water runoff rates and volumes from identified new land development and encourage groundwater recharge. Proposed Model Storm Water Ordinance for Kent County recommends the following release rates: 0.05 cfs/acre for a 2-year storm event for Zone A; 0.13 cfs/acre per Kent County Drain Commission rules for Zone B	\$8,000/ordinance development (Grand Valley Community Survey)	Algoma, Cannon, and Courtland Townships of Kent County	
Development/Enforcement of Stream Buffer Ordinance	Ordinance protects a given area of buffer adjacent to stream systems. Protected buffers can provide numerous environmental protection and resource management benefits.	Moderate to high. Reduces the risk of sediment and contaminants entering the stream. Provides long term solution to water quality concerns.	Sediment and attached pollutants, nutrients, thermal pollution	Storm water runoff from impervious surfaces (e.g. parking lots and roof tops) and outflow from ponds.	Lack of maintenance can increase erosion if trees fall into streams. At a minimum, keep south and west sides of streams wooded to provide shade. Trees in floodway can impede flow.	\$8,000/ordinance development (Grand Valley Community Survey)	Cannon Township	
Development/Enforcement of Wetland Ordinance	Ordinance promotes a policy to avoid or minimize damage to wetlands and coordinate the planning and zoning process with federal and state wetland programs.	Wetland benefits are preserved. Wetlands provide natural pollution control by removing pollutants, filtering and collecting sediment, reducing both soil erosion and downstream flooding, and recharging groundwater supplies.	Sediment and attached pollutants, hydrologic flow, nutrients, pathogens, chemicals (pesticides), salts	Storm water runoff	Part 303, section 324.30307 authorizes local units of government to adopt and administer their own wetland regulations that address wetlands not protected by the state, provided they are at least as restrictive as state regulations. The DEQ must be notified if a community adopts a wetland ordinance, but it has no review or approval authority.	\$8,000/ordinance development (Grand	Salem Township	
Green Space Protection Ordinance	Ordinance preserves environmentally sensitive and open areas. Can also use filter strips and tree planting to enhance protection.	High if properly executed. Provides protection of natural pollutant removal methods.	Thermal pollution, sediment, nutrients, hydrologic flow	Construction zones, developed parcels, agricultural land		\$3/sqft. Land acquisition and management costs depend on site. Affected property may double as park/open space usage with related costs.	Ottawa County Parks and Recreation Commission, Land Conservancy of West Michigan	
Low Impact Design Practices	Land use planning to incorporate practices on-site. Examples include: bioretention, dry wells, filter strips, vegetated buffers, grass swales, rain barrels, cisterns, infiltration trenches. Involves careful site planning to reduce the impact to water resources by eliminating impervious surfaces and protecting infiltration areas.		Thermal pollution, solids, sediments, nutrients, metals	Rainfall, runoff, solar, fertilizers				http://www.lid-stormwater.net/
Illicit Discharge Ordinance (MDOT)	Program to seek out and prohibit illicit discharges and connections to municipal separate storm sewers	High if properly executed. Eliminate hazardous and harmful discharges	Hazardous wastes	Industrial, residential, commercial		\$2/ac (assuming 1 system monitored every 5 sq. miles). Maintenance program. \$0.83/acre/year, \$50/ac/yr (with TV inspection)	Phase II communities, MDOT	
Pet waste disposal ordinance	Ordinance to require pet owners to clean up after their pets. Can be enhanced by installing signs and pet waste collection facilities in high traffic areas	Moderate	Nutrients, bacteria	Animals, dogs or other household pets				
Development/Enforcement of Septic System Ordinance	Ordinance abates water pollution caused by failing on-site sewage disposal systems minimizes infiltration of seepage from systems into the storm water drainage system, and establishes penalties for its violation.	Ordinance can be used to enforce regular maintenance of disposal systems, which will minimize threats to public health and combat the degradatior of surface and subsurface waters.	Bacteria	Septic systems	Lack of ordinance enforcement (regular inspection) can introduce pollution into groundwater reserves.	\$8,000/ordinance development (Grand Valley Community Survey)	Wayne County	
Development/Enforcement of Yard and Kitchen Waste Ordinance	Ordinance prohibits the disposal of yard and kitchen waste on streambanks and outlines acceptable disposal methods, such as composting or disposal at a permitted disposal facility.	Proper disposal of yard and kitchen waste ensures that nutrients from these materials are not released into surface and groundwater supplies.	Nutrients	Upland source (yard/kitchen waste)	If yard and kitchen waste are composted on landowner's premises, nutrient runoff should not reach nearby surface water bodies.	\$8,000/ordinance development (Grand Valley Community Survey)		
Development/Enforcement of Watercraft Control Ordinance	Ordinance prohibits the operator of a recreational watercraft to exceed a "slow - no wake" speed when within x feet of the shoreline.	Enforcing "no wake" zones will reduce streambank erosion.	Sediment and attached pollutants	Recreational watercraft	Issues concerning trespass, disorderly conduct, or damage caused to private property by the wake of vessels are not valid safety considerations for establishing a local ordinance.		City of Detroit (Detroit and Rouge River)	

BEST MANAGERIAL PRACTICES	DESCRIPTION	BENEFIT	POLLUTANT ADDRESSED	POTENTIAL SOURCES OF POLLUTANTS	ENVIRONMENTAL IMPACTS AND SPECIAL CONCERNS	COMPARATIVE COSTS	COMMUNITIES USING BMP	MDEQ/ NRCS LINK
Public Access Ordinance	Ordinance controls access to a designated waterbody by limiting hours of access, number of users, etc.	By controlling public access to a waterbody, sediment pollution is reduced.	Sediment and attached pollutants	Public access, boat wakes	Consider using porous/ modular pavement at boat launches locations.	\$8,000/ordinance development (Grand Valley Community Survey)		
Development/Enforcement of Fertilizer Ordinance	Ordinance prohibits the use of fertilizers containing more than 1% by weight of anhydric phosphoric acid.	Moderate; other sources of phosphorus may be present in the watershed.	Phosphorus	Fertilizers	Sources of low phosphorus fertilizers are few.	High: \$8,000/ordinance development (Grand Valley Community Survey)	East Grand Rapids	
RECYCLING/COMPOSTING Household hazardous waste	Proper buying, using, storing and disposal of Hazardous materials such as	Moderate: eliminates disincentives and discourages illegal dumping of products	Hazardous wastes		Proper credentials needed for management.	Recycling station expenses.		http://www.deq.state.mi.us/docume
management	automotive waste, household cleaners and paint.	into storm sewers and onto the ground	azarabab masies	products, etc.	Typically consultant based.	Troopoining ordinary or portions.		nts/deq-swq-nps-hhhw.pdf
Composting	Converting plant debris, grass, leaves, pruned branches, etc. to compost. Use with lawn maintenance, pesticide and fertilizer management, and diversions (if needed)	Keeping organic debris out of surface waters and away from floodplains. Will help prevent the depletion of oxygen in surface waters. Widely applicable to dense residential or riparian sites.	Nutrients, chemicals, and pesticides, low dissolved oxygen, trash and debris	neighborhoods, agricultural areas, yard, and kitchen waste	Compost piles placed near floodplains will contribute to the depletion of oxygen in surface waters. Composting requires proper aeration, watering and mixing in order to result in a useable end-product. Soils, topography and climate will all affect the types of composting options available.	Recycling vs. garbage hauler costs. Establishment of large scale facility \$190,000, land dependant. \$70,000 annual maintenance.	Larger facilities are generally operated by private business. Ex: in Sec 36, Zeeland Township, Ottawa County	
Yard waste collection and disposal program	Municipalities collect yard waste for compost.	Widely applicable to dense residential or riparian sites	Nutrients and organic sediment, trash and debris	Yard waste and leaf litter	Waste needs to be composted and correctly applied as fertilizer. Need large collection facility for compost operations.	Low	Cascade Township, City of Wyoming, City of Kentwood, City of Grand Rapids, Byron Township, Ada Township, City of Coopersville, Georgetown Twp	
Recycling Program (MDOT)	Collection of recyclable materials either by curb-side pick up or at drop off centers	Reduction in potential clogging and harmful discharge	trash, used construction material reuse	Highways, travelers, vehicle debris	Some materials may require more energy to collect and recycle than using new products. However, recycling programs do build awareness	\$200,000/year. \$1.15/person/yr		
Used oil recycling program (MDOT)	Central collection facilities that allow residents to drop off used motor oil. Can be operated by local governments or businesses that recycle oil.	Reduces risk of surface water and groundwater contamination	Used oil and other transportation fluids reuse, hydrocarbons, metals, nutrients	Vehicle maintenance facilities. Vehicles or other equipment requiring lubrication.	Oil may easily become contaminated during collection making it a hazardous waste.	\$79 - \$179 recovery charge. Administrative costs to organize. Minimal personnel cost to collect and temporarily store oil. Opportunity to be paid by private business for waste material	MDOT, OCRC	
TURF MANAGEMENT								
Pesticide management for turf grass and ornamentals	Use of all available strategies (Resistant Turf, Cultural controls, Biological controls, Mechanical controls and Pesticides) to manage pests so that an acceptable yield and quality can be achieved economically with the least disruption to the environment. Used with lawn maintenance, fertilizer management, and soil management.	Moderate to high	Harmful chemicals, pesticides, insecticides	Landscaping, storm water runoff	Must have proper training and credentials to commercially apply pesticides and manage turf.	Pesticide management should reduce application rates and related costs.	Public parks, administrative offices thru out region. Typically private contractor based.	http://www.deq.state.mi.us/docume nts/deq-swq-nps-pm.pdf
Lawn maintenance	Includes mowing, irrigating, pesticide and fertilizer management, soil management and the disposal of organic debris such as lawn clippings and leaves.		Phosphorus, nutrients, and sediments	Landscaping, storm water runoff	Consider minimizing lawn with more native species	Lawn alternatives may reduce mowing but still require regular maintenance of weed control and pest management.		http://www.deq.state.mi.us/docume nts/deq-swq-nps-lm.pdf
Fertilizer management	Includes the proper selection, use, application, storage and disposal of fertilizers. Used with pesticide management, lawn maintenance, and nutrient management	Moderate;	Nutrients	Landscaping, storm water runoff	Consider consulting professional, such as Michigan State University Extension.	Material cost reduction may conflict with traditional aesthetic values. Fertilizer management should reduce chemical costs but may impact maintenance and watering.		http://www.deq.state.mi.us/docume nts/deq-swq-nps-fm.pdf
Soil testing of lawns and gardens			Nutrients	Lawn and garden fertilizer	Testing should be done at qualified lab	Typically yearly testing required, contact local MSU Extension office. Test results may result in operations and maintenance costs. Low cost tool in management of lawns and gardens. \$9.50 per test.	Typically associated with private property or public administration sites.	
OPERATIONS & MAINTENANCE				T	- -			
Operation and maintenance programs			Sediment, hydrocarbons, metals, nutrients	Erosion of road footprint and related infrastructure, leaking equipment, etc.		Labor intensive. Equipment required.	MDOT, OCRC and other Public Works Departments	
BMP Inspection and Maintenance Plan for roads (MDOT)		A regular inspection and maintenance program will maintain the effectiveness and structural integrity of the BMPs.	Sediment, hydrocarbons, metals, nutrients, etc.	Road related sediments /pollutants	Materials needed for emergency structural repairs may not be easily obtainable and may require stockpiling (MDOT). Should be designed and implemented by trained professional.	\$150-\$9,000 depending on the BMP. Specialized BMP installation involves planning, design, construction and maintenance costs.	MDOT, Drain Commission's and other Public Works Departments	

Managerial Best Mana	Ī	T	POLLUTANT	POTENTIAL SOURCES OF	ENVIRONMENTAL IMPACTS AND SPECIAL	I	T	
BEST MANAGERIAL PRACTICES	DESCRIPTION	BENEFIT	ADDRESSED	POLLUTANTS	CONCERNS	COMPARATIVE COSTS	COMMUNITIES USING BMP	MDEQ/ NRCS LINK
Material Management Plan (MDOT)	Identified hazardous and non-hazardous materials in the facility. Assures that all containers have labels. Identifies hazardous chemicals that require special handling, storage, and disposal.		Chemicals and other potentially hazardous materials.	Varies depending on type of materia usage at specific facilities. Oil, salt, degreasers, solvents, antifreeze, etc. Industrial sites where chemicals are used.	Extensive training typically required to prepare and administer plan.	Plan preparation and updates. Inspections mandated. Plan development typically needs consultant or knowledgeable employee. Operation typically employee dependant.		
Clean and maintain storm drain channels (MDOT)		Prevent erosion in channels. Improve capacity by removing sediment. Remove debris toxic to wildlife.	Sediment, trash, woody debris	Development, natural erosion, vehicle remnants, road winter safety operations .	Should be implemented by trained professional.	\$21/acre/year, \$45-60 per acre (rural). Channels are less expense to construct and easier to maintain than enclosed systems.	MDOT, Public Works Departments, Road and Drain Commission's	
Clean and maintain storm inlets and catch basins (MDOT)	Catch basins are periodically inspected and cleaned out using a vacuum truck.	Moderate; Reduces pollutant slugs during the first flush, prevents downstream clogging, and restores sediment trapping capacity of the catch basin.	Solids, sediments, metals, oils	Storm water runoff, automobiles	Requires continual maintenance every 1 - 3 years General fund, KCRC road maintenance budget - \$250,000	Moderate/high; Total annual cost per catch basin = (\$8/catch basin) + (\$40/catch basin) = \$48/catch basin. (GR BMP Study). \$21/acre/year maintenance.	City of Grand Rapids, East Grand Rapids, KCRC contracts out to Plummer's Environmental, MDOT	
Annual Road/Stream Crossing Inspections	Inspections of stream crossings for evidence of erosion, debris, etc.	Moderate	Sediment	Erosion of streambank		Moderate; regular inspection can prevent major expenditures for potential major points of erosion	Coopersville, OCRC, KCRC	
MUNICIPAL OPERATIONS		T			T	T	KCRC maintains State trunk lines	
Snow and ice control operations	Removal of snow and ice from roadways, utilizing plows, salt, and sand.		Salts	Snow melt runoff	Moderate, all KCRC equipment operators are trained. Training of road maintenance crew required.	KCRC winter maintenance budget - \$3.5 million. Maintenance costs \$1000/lane/mile, dependant on severity of winter.	for Michigan Department of Transportation (MDOT), primary,	
Calibrated Salt Delivery		Low	Salts	Over application of salt	Calibration does not guarantee efficient application of road salt. Annual training and calibration necessary.	Low upfront cost. Long term equipment maintenance vs. reduced salt. Equipment costs \$1500 per truck, minimal additional cost.	Wyoming, KCRC, OCRC	
Pre wet road salt application		High if also used with environmentally friendly alternatives to salt	Salts	Road salt		Low/Moderate; \$25/lane/mile, Equipment maintenance costs - \$5000 per truck.	East Grand Rapids, OCRC	
Snow removal storage on grassy areas		Low	Sediment, metals, hydrocarbons, salt	Snow melt runoff	Snow storage may damage vegetation and possibly cause soil erosion. Piled snow melts at a slower rate. Need ROW for snow removal. Need large grassed area adjacent to buildings and parking areas and properly spaced from waterbody.	Dependant on amount of trucking, distance to site, etc. Cleanup after melt	City of Grandville, City of Grand Haven, City of Holland	
Minimizing effects from road deicing (MDOT)			Salts & chemicals	Maintaining agency, Snow melt runoff, spring rains		Varies	MDOT	
Street Sweeping	The use of specialized equipment to remove litter, loose gravel, soil, vehicle debris and pollutants, dust, de-icing chemicals, and industrial debris from road surfaces. There are generally 2 types of sweepers: mechanical broom street sweepers and vacuum-type street sweepers.	Moderate; 60% TSS removal rate. Reduction in potential clogging of storm drains. Some oil and grease control (MDOT). When done regularly, can remove 50 - 90% of street pollutants (1), makes road surfaces less slippery in light rains, improves aesthetics by removing litter, and controls pollutants.	Sediment, metals, hydrocarbons	Atmosphere, construction, vehicles	Sweeping may wash sediments into catch basins if wash is not vacuumed. Disposal of collected materials must be handled by the governing agency (MDEQ, Public Health, Transportation). Sweeping schedules and timing critical - sweep after snow melt and before spring rains. Vehicle maintenance required.	Mechanical - \$119.40/curb mile. Vacuum Assisted - \$87.95/curb mile	City of Grand Rapids, City of East Grand Rapids, Cascade Township, City of Wyoming, City of Kentwood, Gerald R. Ford International Airport Mostly contracted out to Semisweet by KCRC, MDOT	http://www.deq.state.mi.us/docume nts/deq-swq-nps-sw.pdf
Emergency Spill Response and Prevention Plan	Plans detail emergency procedures to respond to a release of hazardous materials. Also plans that describe procedures for proper handling and storage of chemical materials.	Low to high, depending on preparedness. Can be highly effective at reducing the risk of surface and ground water contamination	Hazardous wastes	Equipment, poor training, accidents, Industrial, commercial, residential, and transportation related spills, chemical storage areas	Speed and containment are critical. Requires a well-planned and clearly defined plan, updated regularly. May require training, protective gear, containment and retrieval knowledge. Equipment must be readily available. (MDOT)	Management plan preparation with upgrades. Cost of simulations. In public sector, typically subcontracted to private contractor	Ottawa County, MDOT, Kent County, local municipalities	
Soil Erosion and Sedimentation Control (SESC) plans		High if properly executed. Reduce erosion and sedimentation during construction project. Increased removal using Floc Logs through construction.	Sediment	unvegetated areas, land development	State training, Soil Erosion and Sedimentation Control and/or Certified Operator.	Act 91 mandated, ongoing local administrative costs. Fee based to landowner option.	Commonly used by many communities.	
Dust Control (MDEQ)	Using measures such as Watering, Fencing, Mulching and Vegetation to prevent soil and attached pollutants from leaving a site and/or entering nearby waterways.	High if properly executed.	Sediment		Salt and other potential pollutants are used in the dust control mixture. Rural, urbanizing, and transportation sites subject to wind erosion. Air pollution issue if neglected.	\$100 to \$500 per treatment. Employee administrative expense. Maintenance of water truck (minimal) - Roads-50-55 cents per gal - 1500 gal per mile for a single pass		http://www.deq.state.mi.us/documents/deq-swq-nps-dc.pdf
Urban forestry	Management of woods and trees in an urban setting.	Moderate to high. Increases greenspace, reduces storm water runoff and thermal pollution. Long term solution to concerns.	Thermal pollution, solids, sediments	Rainfall, Solar	Woody debris and detritus may require annual maintenance. May eliminate original line of sight	J - 1		
OTHER	•	•				•		

BEST MANAGERIAL PRACTICES	DESCRIPTION	BENEFIT	POLLUTANT ADDRESSED	POTENTIAL SOURCES OF POLLUTANTS	ENVIRONMENTAL IMPACTS AND SPECIAL CONCERNS	COMPARATIVE COSTS	COMMUNITIES USING BMP	MDEQ/ NRCS LINK
Invasive plant species management	Invasive plant species are controlled using appropriate and effective removal methods for particular species.	Population and spread of invasive plant species is reduced or eliminated.	Invasive plant species	Accidental/purposeful introduction, natural dispersion	Invasive alien plants thrive in disturbed sites. Native plant communities fragmented by human disturbance are most vulnerable to invasion, but the most invasive species can infest even intact ecosystems. Invasive alien plants are free of natural controls such as insects and diseases that keep them in balance in their native habitats. Invasive species can also significantly reduce forest regeneration.		Grand Rapids Audubon Society (garlic mustard)	
Woody Debris Management								
Goose Management								
INFORMATION & EDUCATION								
Public Education Program (MDOT)		Can reduce improper disposal of hazardous waste	Potentially all			\$200,000/year	METRO Council, Grand Rapids City, MACC	
Grounds maintenance training		Moderate	Nutrients and organic sediment	Leaf litter, grass clippings, fertilizer, and pesticides		Low	Cascade Township, City of Grandville, City of Grand Rapids	
Employee Training (MDOT)		Low cost and easy to implement storm water management BMPs	Potentially all				MDOT	
Storm Drain Stenciling	Painting Storm Drain Inlets with "No Dumping" signs and symbols.	Moderate; Educates the general public that the storm drain discharges into a natural waterbody. Can tie into hazardous waste collection, yard waste collection	Hazardous waste and nutrients	Household hazardous waste, motor oil, pet waste and yard waste	Volunteers need to take care with paint around storm drains. Permanent castings or decals may be more effective. Public education campaign is also needed for effective reduction in illegal dumping. Short term effectiveness.	\$0.45/inch - Mylar stencils \$5-\$6 each - ceramic tiles \$100 or more - metal stencils	East Grand Rapids, MDOT, Spring Lake Lake Board	

- Evaluation of Best Management Practices for MDOT, 2002.
 Source Area and Regional Storm Water Treatment Practices, Bannerman.
- 3. Guidebook of Best Management Practices for Michigan, MDEQ, 1996.
- 4. National Pollutant Removal Performance Database, EPA, June 2000.
- 5. Hydro-Compliance Management, Inc.
- 6. Governmental Accounting Focus, Estimating Useful Lives for Capital Assets.
- 7. Rouge River National Wet Weather Demonstration Project, 2001
- 8. Rain Gardens, Beautiful Solutions for Water Pollution, West Michigan Rain Gardens, 2003
- 9. Field Office Technical Guide, Section 1 Cost Information (draft). USDA-NRCS-MICH, 2004
 10. Michigan Area 3 Component Data, USDA-NRCS, June 2003
- 11. [Michigan] Sample County Practice and Maintenance Costs, USDA-NRCS-MICH, 2001
 12. Conservation Practice Physical Effect Worksheet[s]. USDA-NRCS, 2004
- 13. Information provided by the Technical Committee of the Lower Grand River Watershed Project, 2004
- Personal Communication with District Conservationist of the NRCS Grand Rapids Service Center, 2004
 FY04 Michigan EQIP Statewide Eligible Practice List, Land Management Practices (Incentive Payments), USDA-NRCS-MICH, 2004

APPENDIX H 1&E STRATEGY COMPONENTS

SECTION 1 AUDIENCE CHARACTERISTICS

Target Audience Profile

Taı	rget Audience: Rural Pilot Project Areas
1.	What is the makeup of the target audience? b. Average Age <u>Varied Families</u> c. Gender <u>M & F</u> d. Place of Residents (home or apartment, any unique characteristics) 66.86% owner occupied 33.13% renter occupied e. Level of Education: 85.94% High School Ed or higher (25yrs and older) f. Level of Income: median family income \$56, 471
	g. Other pertinent facts: 38.38% of families have children under 18
2.	How do they communicate with each other? Grand Rapids Press, Grand Rapids Times, Grand Rapids Business Update, Paper, On-The-Town Magazine, Community Voice, Ottawa Press, West Michigan Christian Newspaper, Associated Press, Michigan Outdoor News, Catholic Connector, The Holland Sentinel. West Michigan Today, Alive, Mlive, Bulletin Boards, Church newsletters, Restaurants
3.	How do they receive information on environmental issues? Mass Media and possibly through organizations active in the area.
4.	Of what other community organizations are they members? Timberland Resource Conservation & Development Area Council, Marne American Legion, Girl Scouts of Michigan Trails, Boy Scouts of America, UAW-United Automobile, Aerospace & Agricultural Implement Workers of America, Rotary Club of Grand Rapids, Kent County Conservation League, Kent County Farm Bureau, Marne Conservation Club, Grand Rapids Lions Club, Optimist Club of Grand Rapids, West Walker Sports's Club, Blandford Nature Center, Land Conservancy of West Michigan, West Michigan Alive, The Nature Conservancy, Sand Creek Group, Friends of the Musketawa Trail
5.	What are their major environmental concerns: Residents are concerned about flooding (which is caused by extreme changes in hydrologic flow and worsens due to lack of storage) and sedimentation (which is caused by agricultural uses and lack of BMPs).

Rural Pilot Project Area

General Demographic Profile

Using Demographic Profile 1 (DP-1) Profile of Genera Characteristics: 2000
DP-2 Profile of Selected Social Characteristics: 2000
DP-3 Profile of Selected Economic Characteristics: 200
Geographic Comparison Table-Population Housing (GCT-PHI) Population,
Housing, Area, and Density: 2000

Using the United States Census Bureau, American Fact Finder, www.factfinder.census.gov

Information was collected from above sources for the following Minor Civil Divisions (MCD): Alpine Township, Kent County; Chester Township, Ottawa County; Tallmadge Township, Ottawa County; City of Walker, Kent County; Wright Township, Ottawa County.

- Total Population: 48,300-for whole townships (15,484 when clipped to watershed boundaries)
- Female Population: 24, 157
- Male Population: 24,143
- Average Water Area/square mile/MCD: 0.262
- Total Water Area/square mile: 1.31
- Average Population Density/square mile of land use/ MCD: <u>325.26</u>
- Average Housing Unit Density/square mile of land use/MCD: <u>130.72</u>
- Number of Owner Occupied Housing Units: <u>12,296</u>
- Number of Renter Occupied Housing Units: <u>6,093</u>
- Median Household Income/MCD: \$48,771.00
- Median Family Income/MCD: \$56, 471.00
- Average % of Families with Children Under 18/MCD: 38.38%
- Average % Have High School Education or Up/MCD: 85.94%
- Average % Have BA or Higher/MCD: 16.21%
- Average % Have only High School: <u>37.34%</u>

Low Targ

Lower Grand River Watershed Project

Target Audience Profile

	Tudici	ce: Agricultural Community
1.	a. b. c.	Gender N/A Place of Residents (home or apartment, any unique characteristics) Homes in watershed
		Level of Education: N/A
		Level of Income: refer to following table
	f.	Other pertinent facts: Major crops for Kent and Ottawa County are corn, oats, and soybeans
2.	Extens	o they communicate with each other? <u>Michigan State University</u> tion, Farm Bureau, Natural Resource Conservation District, Natural rce Conservation Service, Internet, 4-H fairs
3.		o they receive information on environmental issues? Mass Media, local ations, small group discussions.
3.		o they receive information on environmental issues? Mass Media, local ations, small group discussions.
3.		• · · · · · · · · · · · · · · · · · · ·
	public ————————————————————————————————————	• · · · · · · · · · · · · · · · · · · ·
	public ————————————————————————————————————	at other community organizations are they members? Places of worship.
	public ————————————————————————————————————	at other community organizations are they members? Places of worship.
	public ————————————————————————————————————	at other community organizations are they members? Places of worship.
4.	Of wh sporting ————————————————————————————————————	at other community organizations are they members? Places of worship.
4.	Of wh sporting ————————————————————————————————————	at other community organizations are they members? Places of worship, ag clubs are their major environmental concerns: Flooding, water storage, dredging
4.	Of wh sporting ————————————————————————————————————	at other community organizations are they members? Places of worship, ag clubs are their major environmental concerns: Flooding, water storage, dredging

Target Audience Profile
Target Audience: Agricultural Community, Extra Information

		1	
	1997	1992	1987
Farms (number)	1,136	1,190	1,368
Land in farms (acres)	186,453	190,706	203,842
Land in farms - average size of farm (acres)	164	160	149
Land in farms - median size of farm (acres)	63	(N)	(N)
Estimated market value of land and buildings@1: average per farm (dollars)	453,387	301,712	202,820
Estimated market value of land and buildings@1: average per acre (dollars)	2,686	1,832	1,274
Estimated market value of all machinery/equipment@1: average per farm (dollars)	74,189	59,263	42,890
Farms by size: 1 to 9 acres	97	97	126
Farms by size: 10 to 49 acres	383	347	430
Farms by size: 50 to 179 acres	399	470	489
Farms by size: 180 to 499 acres	178	196	234
Farms by size: 500 to 999 acres	45	52	62
Farms by size: 1,000 acres or more	34	28	27
Total cropland (farms)	1,043	1,113	1,268
Total cropland (acres)	149,898	154,552	163,275
Total cropland, harvested cropland (farms)	934	1,046	1,175
Total cropland, harvested cropland (acres)	127,476	119,403	121,233
Irrigated land (farms)	128	164	144
Irrigated land (acres)	6,120	9,030	7,445
Market value of agricultural products sold (\$1,000)	121,041	105,990	82,983
Market value of agricultural products sold, average per farm (dollars)	106,550	89,067	60,660
Market value of ag. prod. sold-crops, incl. nursery and greenhouse crops (\$1,000)	91,987	73,688	50,383
Market value of ag. products sold - livestock, poultry, and their products (\$1,000)	29,054	32,302	32,600
Farms by value of sales: Less than \$2,500	309	325	397
Farms by value of sales: \$2,500 to \$4,999	152	139	163
Farms by value of sales: \$5,000 to \$9,999	127	157	196
Farms by value of sales: \$10,000 to \$24,999	158	161	188
Farms by value of sales: \$25,000 to \$49,999	87	99	105
Farms by value of sales: \$50,000 to \$99,999	89	96	108
Farms by value of sales: \$100,000 or more	214	213	211
Total farm production expenses@1 (\$1,000)	93,300	88,084	66,289
Total farm production expenses@1, average per farm (dollars)	82,131	74,082	48,421
Net cash return from agricultural sales for the farm unit (see text)@1 (farms)	1,136	1,189	1,369
Net cash return from agricultural sales for the farm unit (see text)@1 (\$1,000)	27,844	19,863	16,075
Net cash return from ag. sales for farm unit (see text)@1, average per farm (dollars)	24,510	16,705	11,742

AGRICULTURAL CENSUS INFORMATION FOR	KENT COUNTY	, MICHIGAN	
Operators by principal occupation: Farming	487	536	625
Operators by principal occupation: Other	649	654	743
Operators by days worked off farm: Any	667	701	809
Operators by days worked off farm: 200 days or more	501	531	610
Livestock and poultry: Cattle and calves inventory (farms)	356	431	531
Livestock and poultry: Cattle and calves inventory (number)	27,633	32,184	34,672
Beef cows (farms)	189	184	227
Beef cows (number)	2,769	2,327	3,286
Milk cows (farms)	93	148	173
Milk cows (number)	9,097	11,218	12,343
Cattle and calves sold (farms)	336	391	519
Cattle and calves sold (number)	11,272	13,420	17,002
Hogs and pigs inventory (farms)	52	88	108
Hogs and pigs inventory (number)	7,949	14,203	17,065
Hogs and pigs sold (farms)	49	89	112
Hogs and pigs sold (number)	14,364	26,356	27,198
Sheep and lambs inventory (farms)	27	27	37
Sheep and lambs inventory (number)	523	1,282	949
Layers and pullets 13 weeks old and older inventory (see text) (farms)	32	45	62
Layers and pullets 13 weeks old and older inventory (see text) (number)	976	(D)	2,795
Broilers and other meat-type chickens sold (farms)	5	11	10
Broilers and other meat-type chickens sold (number)	283	782	880
Corn for grain or seed (farms)	373	404	596
Corn for grain or seed (acres)	42,188	39,798	39,847
Corn for grain or seed (bushels)	4,550,863	3,271,022	3,684,369
Wheat for grain (farms)	155	206	205
Wheat for grain (acres)	6,918	7,744	5,565
Wheat for grain (bushels)	361,368	318,398	243,064
Soybeans for beans (farms)	123	85	38
Soybeans for beans (acres)	14,120	5,743	2,520
Soybeans for beans (bushels)	526,560	163,833	91,803
Dry edible beans, excluding dry limas (farms)	17	18	9
Dry edible beans, excluding dry limas (acres)	2,876	2,243	1,346
Dry edible beans, excluding dry limas (hundredweight)	50,270	32,961	19,108
Hay-alfalfa, other tame, small grain, wild, grass silage, green chop, etc. (see txt) (farms)	553	634	757
Hay-alfalfa, other tame, small grain, wild, grass silage, green chop, etc (see txt)(acres)	30,713	34,196	39,950
Hay-alfalfa, other tame, small grain, wild, grass silage, green chop, etc (see txt)(tons, dry)	78,350	89,707	109,579
Vegetables harvested for sale (see text) (farms)	80	114	118
Vegetables harvested for sale (see text) (acres)	3,747	4,507	4,311
Land in orchards (farms)	184	236	257
Land in orchards (acres)	15,143	16,988	16,332

⁽D) Withheld to avoid disclosing data for individual farms. (N) Not available.

Data From: "Census of Agriculture: 1987, 1992, 1997." <u>GovStats</u>. Oregon State University Libraries. Updated: February 28, 2002. Retrieved: November 23, 2003. http://govinfo.kerr.orst.edu/php/agri/show2.php

	1997	1992	1987
Farms (number)	1,292	1,367	1,471
Land in farms (acres)	170,627	176,305	177,894
Land in farms - average size of farm (acres)	132	129	121
Land in farms - median size of farm (acres)	51	(N)	(N)
Estimated market value of land and buildings@1: average per farm (dollars)	395,504	268,234	207,266
Estimated market value of land and buildings@1: average per acre (dollars)	3,066	2,026	1,754
Estimated market value of all machinery/equipment@1:aver per farm (dollars)	78,117	61,705	52,554
Farms by size: 1 to 9 acres	149	142	156
Farms by size: 10 to 49 acres	476	457	479
Farms by size: 50 to 179 acres	426	493	541
Farms by size: 180 to 499 acres	171	213	242
Farms by size: 500 to 999 acres	48	50	43
Farms by size: 1,000 acres or more	22	12	10
Total cropland (farms)	1,199	1,287	1,380
Total cropland (acres)	140,978	146,319	146,152
Total cropland, harvested cropland (farms)	1,096	1,220	1,305
Total cropland, harvested cropland (acres)	119,789	112,242	112,721
Irrigated land (farms)	323	297	296
Irrigated land (acres)	14,811	13,659	10,537
Market value of agricultural products sold (\$1,000)	299,985	232,853	182,959
Market value of agricultural products sold, average per farm (dollars)	232,187	170,339	124,378
Market value of ag. prod. sold-crops, incl. nursery and greenhouse crops (\$1,000)	160,066	108,015	78,706
Market value of ag. products sold - livestock, poultry, and their products (\$1,000)	139,919	124,838	104,253
Farms by value of sales: Less than \$2,500	252	251	309
Farms by value of sales: \$2,500 to \$4,999	140	132	164
Farms by value of sales: \$5,000 to \$9,999	150	180	205
Farms by value of sales: \$10,000 to \$24,999	177	170	204
Farms by value of sales: \$25,000 to \$49,999	117	123	131
Farms by value of sales: \$50,000 to \$99,999	118	155	136
Farms by value of sales: \$100,000 or more	338	356	322
Total farm production expenses@1 (\$1,000)	243,970	196,812	152,637
Total farm production expenses@1, average per farm (dollars)	188,685	143,868	103,694
Net cash return from agricultural sales for the farm unit (see text)@1 (farms)	1,293	1,368	1,472
Net cash return from agricultural sales for the farm unit (see text)@1 (\$1,000)	56,728	33,087	30,571
Net cash return from ag. sales for farm unit (see text)@1, average per farm (dollars)	43,873	24,187	20,768
Operators by principal occupation: Farming	658	724	742

AGRICULTURAL 2000 CENSUS INFORMATION FOR	R OTTAWA CO	UNTY, MICHIG	AN
Operators by principal occupation: Other	634	643	729
Operators by days worked off farm: Any	713	782	852
Operators by days worked off farm: 200 days or more	506	552	623
Livestock and poultry: Cattle and calves inventory (farms)	451	545	607
Livestock and poultry: Cattle and calves inventory (number)	36,159	41,580	40,843
Beef cows (farms)	184	196	211
Beef cows (number)	2,421	3,644	2,266
Milk cows (farms)	137	184	205
Milk cows (number)	13,177	13,470	12,517
Cattle and calves sold (farms)	429	517	584
Cattle and calves sold (number)	46,743	23,626	40,069
Hogs and pigs inventory (farms)	96	177	176
Hogs and pigs inventory (number)	69,018	89,434	90,617
Hogs and pigs sold (farms)	97	181	193
Hogs and pigs sold (number)	162,430	168,499	168,880
Sheep and lambs inventory (farms)	35	32	23
Sheep and lambs inventory (number)	713	938	462
Layers and pullets 13 weeks old and older inventory (see text) (farms)	46	50	69
Layers and pullets 13 weeks old and older inventory (see text) (number)	2,336,067	983,741	2,392,286
Broilers and other meat-type chickens sold (farms)	20	18	21
Broilers and other meat-type chickens sold (number)	9,166	3,032	369,297
Corn for grain or seed (farms)	410	525	683
Corn for grain or seed (acres)	42,224	42,362	42,328
Corn for grain or seed (bushels)	4,862,900	3,724,693	4,055,681
Wheat for grain (farms)	199	206	109
Wheat for grain (acres)	6,118	4,863	2,011
Wheat for grain (bushels)	318,173	206,383	82,869
Soybeans for beans (farms)	132	34	33
Soybeans for beans (acres)	9,232	1,289	1,148
Soybeans for beans (bushels)	369,525	36,483	38,364
Dry edible beans, excluding dry limas (farms)	2	0	0
Dry edible beans, excluding dry limas (acres)	(D)	0	0
Dry edible beans, excluding dry limas (hundredweight)	(D)	0	0
Hay-alfalfa, other tame, small grain, wild, grass silage, green chop, etc (see txt)(farms)	535	628	745
Hay-alfalfa, other tame, small grain, wild, grass silage, green chop, etc. (see txt)(acres)	29,015	29,723	33,541
Hay-alfalfa, other tame, small grain, wild, grass silage, green	71,942	76,358	84,903
chop, etc. (see txt) (tons, dry)	1 1,0 12		
	103	126	152
chop, etc. (see txt) (tons, dry)		126 3,752	152 4,475
chop, etc. (see txt) (tons, dry) Vegetables harvested for sale (see text) (farms)	103		1

⁽D) Withheld to avoid disclosing data for individual farms. (N) Not available.

Data From: "Census of Agriculture: 1987, 1992, 1997." <u>GovStats</u>. Oregon State University Libraries. Updated: February 28, 2002. Retrieved: November 23, 2003. http://govinfo.kerr.orst.edu/php/agri/show2.php

Target Audience Profile

Audience: Builders and Developers
What is the makeup of the target audience (enguer if enprenrieta)?
What is the makeup of the target audience (answer if appropriate)?
a. Average Age N/A
b. Gender Majority are Male
c. Place of Residents (home or apartment, any unique characteristics)
Focused on Ottawa and Kent County, not townships
d. Level of Education: Specialized on building tasks, not overly scientific technical information.
e. Level of Income: varies by number of projects and size of company
f. Other pertinent facts: Group does better with hands on items that can be
used at work site rather than with products or meetings that take them
away from projects.
away from projects.
How do they communicate with each other? Newsletters, workshops, educational programs supplied by Home Builders Association
How do they receive information on environmental issues? <u>Regulations</u>
governing construction activities, classes required to obtain permits, newsletters,
and mass media.
Of what other community organizations are they members? Home Builders Association
What are their major environmental concerns: Depends on builder, a lot of emphasis is put on erosion and sediment controls, will want environmental practices that help to sell homes, atheistically, practically, and financially.
* ***

 $Information\ from\ Home\ Builders\ Association,\ phone\ interview\ with\ Mr.\ Chris\ Hall,\ November\ 24,\ 2003$

Target Audience Profile

get Audience: Environmental/Recreational Groups
 What is the makeup of the target audience (answer if appropriate)? a. Average Age <u>Varied</u> b. Gender <u>M/F</u> c. Place of Residents (home or apartment, any unique characteristics)
Primarily in Ottawa County
d. Level of Education: Varied
e. Level of Income: Varied
f. Other pertinent facts: Have been active in other watershed efforts during planning phase of project.
2. How do they communicate with each other? <u>Primarily through meetings and specific group publications/paper updates.</u>
3. How do they receive information on environmental issues? <u>Mass media, and through other environmental publications</u> , possibly nation wide publications.
4. Of what other community organizations are they members? Places of worship, schools, some government venues.
-
5. What are their major environmental concerns: Remains particular to group. Some interest in making land available to the public through development of parks (Lions Club)

rget Audience: Schools K-Conege
1. What is the makeup of the target audience (answer if appropriate)?
a. Average Age 4-22
b. Gender M/F
c. Place of Residents (home or apartment, any unique characteristics)
Primarily in Ottawa County
d. Level of Education: Varied
e. Level of Income: Varied/Majority existing on parents' income or
small part time employment
g.Other pertinent facts: Grand Valley State University students have been
active in other watershed efforts during planning phase of project.
active in other watershed errorts during planning phase or project.
2. How do they communicate with each other? Through school activities, clubs,
extracurricular events, classroom activities and lessons, social groups.
extracurricular events, classroom activities and lessons, social groups.
2. How do they receive information on anyironmental issues? Mass madia lessons
3. How do they receive information on environmental issues? <u>Mass media, lessons,</u>
social groups, extracurricular events.
4. Of what other community organizations are they members? Places of worship,
clubs, teams, 4-H.
5. What are their major environmental concerns: <u>Interest in world around them,</u>
understanding what is happening in their environment, what they can do to help.

Target Audience Profile

Target A	Audience: Homeowners
1. V	What is the makeup of the target audience (answer if appropriate)? h. Average Age i. GenderM/F j. Place of Residents (home or apartment, any unique characteristics) 12,296 homeowner occupied housing units.
	 k. Level of Education: 85% high school education or higher l. Level of Income: median family income \$56,471 m. Other pertinent facts: can get possible riparian homeowner listing from Ottawa County.
	How do they communicate with each other? Through mass media, Advance is the ocal newspaper, attending children's' school events, church events, one on one
	How do they receive information on environmental issues? Flyers, newspaper, radio, television, home improvement stores.
	Of what other community organizations are they members? Environmental groups, places of worship, schools, local units of government.
	What are their major environmental concerns: Flooding, having water safe for contact, having environment safe for family, protecting home investment
_	
_	

Data from same source as rural residents.

Target Audience Profile

Target	Audien	ce: Watershed Management Members
1.	n. o. p.	s the makeup of the target audience (answer if appropriate)? Average Age 24 and up Gender M/F Place of Residents (home or apartment, any unique characteristics) Reside in watershed and surrounding watersheds Level of Education: high school plus some Level of Income: varied
	S.	Other pertinent facts: <u>have been working together for last couple</u> of years, have existing networks for information dissemination, looking to become non-profit entity
2.	How d	o they communicate with each other? Meetings, email, phone calls
3.	profess	o they receive information on environmental issues? Researchers, sors, state resources, presentations, flyers, regulations, meetings, articles, workshops.
		•
4.		at other community organizations are they members? <u>Local units of</u> ment, some ties to Boy Scouts, local clubs, and places of worship.
5.		are their major environmental concerns? Flooding needs to be d, stream to be a resource, farming is to be sustained.

Data is from personal experience of project managers, participation at Sand Creek group meetings, and a review of group meeting minutes.

Target Audience Profile

and ICMA.

Target Audie	nce: Locally Elected Bodies
1 33714:-	(1, , , , , 1, , , , , , , , , , , , , ,
	the makeup of the target audience (answer if appropriate)?
	Average Age 30+
	Gender M/F
c.	Place of Residents (home or apartment, any unique characteristics)
	Generally residing in watershed or close to watershed, many living
	in own homes
	Level of Education: High school and up
	Level of Income: varied
f.	1
	Tallmadge, and Wright, and City of Walker involved, along with Ottawa
	County Commissioners
day-to- there a	lo they communicate with each other? <u>Board meetings</u> , <u>planning meetings</u> , <u>clay operations</u> . Also, often being friends and neighbors of the same community, <u>re ample opportunities to communicate at local venues such as church and school</u> ons as well as local socially oriented businesses such as restaurants or entertainment
вроиз.	
elected involve slanted specifi profess legisla	lo they receive information on environmental issues? Since many locally officials have "day jobs" it depends on their other associations. Many are ed in occupations where they may receive information on such issues from sources to a point of view, depending upon the occupation. Also, information on a crissue upon which they are deliberating may well be supplied by applicants or sionals hired to inform them on specific aspects of such an issue as part of the tive or administrative review. Information may also be found in publications atted with membership organizations such as those cited below.
<u>Counc</u> <u>Associ</u> counte	at other community organizations are they members? Grand Valley Metro il, Michigan Township Association, Michigan Municipal League, Michigan ation of Counties, local chapters of some of these organizations as well as national rparts organizations, though these are not as active. There may also be erships associated with smaller geographical levels such as neighborhood

5. What are their major environmental concerns? Accomplishing the decisions of their constituents, to implement cost effective measures, meet regulated standards for storm water. To ensure appropriate levels of development and redevelopment occurs without causing health and safety concerns for local residents, businesses, and other constituents. Getting their jobs done on a daily basis without doing great and obvious harm to major environmental assets.

associations, business associations and other special purpose organizations such as watershed groups or multi-jurisdictional discussion groups. Other important groups are based more on profession such as Michigan Local Government Managers Association,

Information is from Andy Bowman, Grand Valley Metro Council, on November 26, 2003.

SECTION 2. WORKSHEET FOR PROJECT STATUS AND EVALUATION


I/E Evaluation Project Worksheet

Questions to Answer at Project Evaluation Meetings

Date:

- 1. Are the planned activities being implemented according to the schedule?
- 2. Is additional support needed?
- 3. Are additional activities needed?
- 4. Do some activities need to be modified/eliminated?
- 5. Are the resources allocated sufficient to carry out the tasks?
- 6. Are all of the target audiences being reached?
- 7. What feedback has been received, and how does it affect the I/E program?
- 8. How do the technical activities on the Lower Grand River Watershed project affect the I/E plan?

SECTION 3. CHECKLIST FOR TRACKING STATUS OF TASKS AND PRODUCTS

Checklist for Tracking the Status of Tasks and Products
Fill in boxes appropriately as tasks are selected for completion. Example:

Proposed Activities	Details	Status	Team Lead	Changes/Comments
Storm Drain Stenciling	Supplies purchased Volunteers organized	On- order	in cooperation with Volunteer	Need more help with transportation, not enough drivers

Proposed Activities	Details	Status	Team Lead	Changes/Comments
Advertise oil recycling programs				
Develop partnerships with pertinent organizations to identify appropriate sites for wetland restoration				
Distribute "Did you know?" list				
Distribute "Operating and Maintaining UST Systems in Michigan" to UST owners				
Distribute fact sheet with cost saving examples				
Distribute materials Best Management Practices				
Distribute materials on agricultural Best Management Practices				
Distribute materials on alternative waste disposal				
Distribute materials on landscaping for water quality				
Distribute resources packets on available governmental/environmental agency programs				

Proposed Activities	Details	Status	Team Lead	Changes/Comments
Distribute Riparian Homeowner Guidebook				
Distribute Septic System Owner's Guidebook				
Distributed irrigation water use GAAMP				
Distribution of proposed Kent/Ottawa Storm Water Ordinance				
Form partnership with the City of Grand Rapids to implement structural and vegetative BMPs to improve Aman Park access sites.				
Media releases/articles				
Participate in the "adopt-a- highway program" through MDOT				
Presentations throughout the watershed				
Storm drain stenciling activities				
Target training workshop for riparian owner and farmers				
Targeted training workshop				
Targeted training workshop for contractors and engineers				
Targeted training workshop for farmers				
Targeted training workshop for farmers and orchard owners				
Targeted training workshop for local decision makers on the Kent/Ottawa Storm Water Ordinance				

Proposed Activities	Details	Status	Team Lead	Changes/Comments
Targeted training workshop for riparian owners				
Tours of successful Best Management Practices				
Volunteer river clean-ups				
Work with land owners to remove inoperable/dismantled vehicles in junk yards				
Workshop for developers/zoning agencies to encourage reduction of impervious surfaces and alternative BMPs in new developments.				
Workshop for local decision makers				

TABLE	1. SUMMARY OF TARGE FORMATS AN						TH	IE VAR	IOUS
Desired	Formats	Target Audiences							
Outcome				C	ategory 1				Category 2
		Residents of Rural Pilot Project Areas	Agricultural Community	Builders/ Developers	Environmental/ Recreational Groups	Schools K- College	Homeowners	Watershed Management Members	Locally Elected Bodies
Awareness	Storm Drain Stenciling	X				X	X		
	Advertise Oil Recycling	X	X				X		
	Media Releases/articles			X					
	"Did You Know List"	X	X	X			X		X
Education	Presentations Throughout Watershed Tours of Successful BMP sites	X	X	X	X	X	37	X	X
		X	X	X			X	X	X
	Fact Sheets with Cost/Savings Examples		Λ	Λ				A	Λ
	Distribute Resource Packets on Available Government/ Environmental Agency Programs	X	X				X	X	X
	Distribute Materials on Alternative Waste Disposal	X	X	X	X	X	X	X	X
	Distribute Materials on Landscaping for Water Quality	X	X	X	X		X		
	Distribute Materials on Agricultural Best Management Practices	X	X						
	Distribute Materials on Storm Water Best Management Practices/Ordinances			X				X	X
	Distribute Materials for Pet Waste	X					X		
	Distribute "Operating and Maintaining Underground Storage Tank Systems in Michigan"			X	X				X
	Distribute Generally Accepted Agricultural Management Practices on Irrigational Water Use								
	Distribute Septic System Owner Guidebooks	X	X				X	X	X
	Distribute Riparian Homeowner Guidebooks	X	X				X	X	X
Action	River Trail Clean Ups	X			X	X	X	X	X
	Targeted Workshops	X	X	X			X		X
	Adopt-A-Highway	X			X		X		
	Partnership for Access Sites in Aman Park	X						X	X
	Landowner Partnership to Remove Debris from Property	X	X				X		
	Partnership to Identify Wetland Restoration Sites	X	X		X		X		

Field of Interest	Contact Name	Ad	Address		
Builders	Classic Homes & Development	125 Luce St. SW	Tallmadge Twp MI 49544	791-8042	
	Verwoert Construction	0705 Tallmadge Woods Dr	Tallmadge Twp MI 49544	735-9117	
	Homestead Timbers Log Homes	14840 16th Ave	Marne, MI 49435	677-5262	
Concrete	Consumers Concrete Corp	10600 Linden NW	Grand Rapids, MI 49504	677-1226	
	A Beene Concrete Construction	2799 Royal Point Dr. NW	Grand Rapids, MI 49544	791-0166	
	Decorative Concrete	5000 Fruit Ridge NW	Grand Rapids, MI 49544	785-8581	
	M C Concrete Inc	1616 Kinney Ave NW	Grand Rapids, MI 49544	735-9817	
	Meyering Concrete Inc	1035 Comstock St	Marne, MI 49435	677-1600	
	Schepers Concrete Construction	10578 Linden Dr M NW	Tallmadge Twp MI 49544	677-0053	
	TS Max Poured Walls Inc	1975 Cleveland St E	Marne, MI 49435	677-9929	
Contractors	Austin Construction Services	2914 3 mile NW	Walker MI 49544	735-9962	
	Elmridge Construction Co	2727 Elmridge NW	Grand Rapids, MI 49544	942-6824	
	Kaptein Trenching & Dozing Inc	12244 24th	Marne, MI 49435	677-1158	
	Jansma Underground Contractors Inc	856 Comstock St	Marne, MI 49435	677-3654	
	Ironwood Construction Company	1140 Wilson NW	Walker MI 49544	453-1241	
	New Dimension Building & Supply	2850 Mullins Ct	Grand Rapids, MI 49544	453-3470	
Engineers	Engineered Material Sales	4250 Lake Michigan Dr NW	Grand Rapids, MI 49544	791-1275	
	Environmental Health Resources Inc	2930 3 mile Rd NW	Grand Rapids, MI 49544	735-1515	
	Superior Environmental Corp	14445 16th Ave	Marne, MI 49435	677-5255	
Excavating	Jack Dykstra Excavating	3677 3 mile Rd NW	Grand Rapids, MI 49544	453-4827	
	Kamps Brothers Excavating	11303 3rd Ave NW	Grand Rapids, MI 49544	453-0204	
	Koster Farms Contracting	0-10763 Linden Dr	Grand Rapids, MI 49544	677-5818	
	Midwest Hydrovac	12635 14th Ave	Tallmadge Twp MI 49544	677-4445	
	Ottawa Excavators	2890 Leonard St	Marne, MI 49435	677-3065	

Field of Interest	Contact Name	Addı	ress	Phone (616 pre-fix)	Internet	
Landscaping	AAA Lawn Care	14202 Ironwood Dr	Tallmadge Twp MI 49544	677-4000	www.aaalawncare.com	
	Grand Valley Land Development Company	0699 Tallmadge Woods Dr	Grand Rapids, MI 49504	791-7240		
	Creekside Garden Center	4015 Fruit Ridge Ave NW		785-1177		
	Botanical Endeavors		Marne	677-9908		
	Landscape Enhancement	0-1483 Lake Michigan Drive	Grand Rapids, MI 49504	677-0054		
	Legend Services Inc	1242 Comstock St	Marne, MI 49435	677-3305		
	Motman's Greenhouses	0-2617 Lake Michigan Drive NW	Grand Rapids, MI 49544	677-1525		
Agricultural	Koster Farms Contracting	010763 Linden Dr	Grand Rapids, MI 49544	677-5818		
	West Michigan Agricultural Products	5261 Egner Rd NE	Cedar Springs MI 49319	696-0340		
	Robert Motman Farms	0-2617 Lake Michigan Dr NW	Grand Rapids, MI 49544	677-1525		
	Robach Dairy Farms	17126 8th Ave	Marne, MI 49435	677-5103		
	David Vandyke	15637 16th Ave	Wright Twp MI 49435	677-5097		
	Zahm Bros Farm	4724 5 mile Rd NW	Grand Rapids, MI 49544	785-9505		
	Hanover Farms	8th Ave				
	Clayton Farms	8th Ave				
	Farmers CO-OP	6535 Alpine NW	Alpine Township, MI 49321 Tallmadge Township, MI	784-1068		
	Bolthouse Brothers Land Inc.	1663 Lincoln	49504	616-677-2949		
	River Ridge Farms Inc.	15585 68th Ave.	Coopersville, MI 49404	616-837-7307		
Waste Disposal	Ed's Rubbish Removal	O-888 Lincoln St NW	Grand Rapids, MI 49544	677-5433		
	Kent County Solid Waste Operations					
	Pitsch Companies	675 Richmond St NW		363-4895		
	Green Valley Disposal Service	3744 Dykstra Dr NW	Grand Rapids, MI 49544	647-1400		
	Log Jam Forest Products Inc	15342 24th St	Marne, MI 49435	677-2560		
	Top Service Inc	14112 12th Ave	Marne, MI 49435	677-5446		

Field of Interest	Contact Name	A	Address		
Centers of Worship	Berlin Baptist Church	1519 Jackson St	Marne, MI 49435	677-3936	
	St. Mary's Church	15164 Juniper Dr	Marne MI 49435	677-3753	
	St. Paul's Anglican Catholic Church	2560 Lake Michigan NW		791-2187	
	Second Baptist Church	840 Wilson NW	Grand Rapids, MI 49544	791-9370	
	Westwood Community Church	2828 Richmond NW	Grand Rapids, MI 49504	791-4921	
	Marne United Methodist Church	14861 Washington St	Marne, MI 49435	677-3957	
	Riverside Christian Church	0835 Luce	Grand Rapids, MI 49544	735-2770	
	Grace Protestant Reform Church	11225 8th Ave NW	Tallmadge Twp MI 49544	791-8751	
	Orchard Hill Reformed Church	1465 3 mile Rd NW	Walker MI 49544	784-4060	
	Tallmadge Wesleyan Church	1428 Leonard Rd	Grand Rapids, MI 49544	677-3339	
Papers	Grand Rapids Press	155 Michigan St NW		222-5455	
	Grand Rapids Times	2016 Eastern Ave SE	Grand Rapids, MI 49507	245-8737	
	Grand Rapids Business Update	2150 44th St SE	Grand Rapids, MI 49508	281-3800	
	On-The-Town Magazine	2141 Port Sheldon St	Jenison, MI 49428	669-1366	
	Community Voice	1066 Grandville Ave SW	Grand Rapids, MI 49503		
	Ottawa Press				
	West Michigan Christian Newspaper	749 W Woodmeade Ct SE	Grand Rapids, MI 49546	977-9550	
	Dieconnect.com Inc	16180 8th Ave	Marne, MI 49435		
	Associated Press	155 Michigan St NW	Grand Rapids, MI 49503		
	Michigan Outdoor News	4603 Pinehurst Ave SW	Grand Rapids, MI 49548	530-7657	
	Catholic Connector	660 Burton SE	Grand Rapids, MI 49507	243-1463	
	The Holland Sentinel				HollandSentinel.com
	West Michigan Today				Westmichigantoday.com
	Alive				Westmichiganalive.com
	Mlive.com				

Field of Interest	Contact Name		dress	Phone (616 pre-fix)	Internet
Organizations	Timberland Resource Conservation & Development Area Council Inc	6655 Alpine NW	Alpine Twp MI 49321 MI	956-9411	
	Marne American Legion Post 376	1469 Arthur St	Marne MI 49435		
	Girl Scouts of Michigan Trails	3275 Walker MI 49544	Walker MI 49544	784-3341	
	Boy Scouts of America UAW- United Automobile, Aerospace & Agricultural	3213 Walker MI 49544 4330 Stafford SW	Walker MI 49544	785-2662 261-4878	
	Implement Workers of America	161 Ottawa Ave NW	Wyoming, MI 49548		
	Rotary Club of Grand Rapids		Grand Rapids, MI 49503	459-5640	
	Kent County Conservation League	8461 Conservation NE	Ada Twp MI 49301	676-1056	
	Kent County Farm Bureau	6525 Alpine NW	Comstock Park 49321	784-1092	
	Ottawa County Farm Bureau	16731 Ferris Street	Grand Haven, MI 49417 Tallmadge Township, MI	846-8770 x5	
	Marne Conservation Club	12929 8th Ave	49504	677-1337	
	Grand Rapids Lions Club	7241 Greentree Dr	Jenison, MI 49428	669-7279	
	Marne Lions Club	5839 Leonard	Coopersville, MI 49404	677-3282	
	REAP			837-6472	
	West Walker Sportsmen's' Club	0-599 Leonard	Grand Rapids, MI 49503	453-5081	
	Blandford Nature Center	1715 Hillburn Ave NW	Grand Rapids, MI 49504	453-6192	
	Land Conservancy of West Michigan	1345 Monroe Ave NW	Grand Rapids, MI 49503	451-9476	
	The Nature Conservancy	456 Plymouth St NE	Grand Rapids, MI 49505	776-0230	busytrail@aol.com
	Friends of the Musketawa Trail			231-821-0553	
Places of Interest	Musketawa Trail				
	Berlin Fairground and Raceway	Berlin Fair Drive	Marne MI 49435	677-5000	www.berlinfair.org
	Aman Park	0-1859 Lake Michigan Dr. NW	Tallmadge Twp MI 49544		
	Indian Trails Camp	1622 Lake Michigan Dr NW	Tallmadge Twp MI 49544	677-5251	
	Sand Creek Golf Course	1831 Johnson St	Marne, MI 49435	677-3379	
	Western Greens Golf Course	2475 Johnson St	Tallmadge Twp MI 49544	677-3677	
	Walker Ice & Fitness Center	4151 Remembrance Rd	Grand Rapids MI 49544	735-6286	
	Walker Meadows Senior Center	1101 Wilson NW	Walker MI 49544		

Field of Interest	Contact Name		Address	Phone (616 pre-fix	Internet)
Schools	West Michigan Academy Environmental Sciences	4463 Leonard NW	Walker MI 49544	791-7320	
	St. Joseph Catholic School				
	Lamont Christian School				
	Walker Charter Academy	1801 3 mile Rd NW	Walker MI 49544	785-2700	www.ci.Walker.mi.us
Government	City of Walker	4243 Remembrance	Walker MI 49544	791-6890	
	Wright Township	1565 Jackson St	Marne, MI 49435	677-3048	
	Tallmadge Township	1451 Leonard Rd	Tallmadge Township 49544	677-1248	www.tallmadge.com/ www.gvmc.org/mich/cities/al
	Alpine Township	5255 Alpine NW	Comstock Park, MI 49321	784-1262	pine/
	Chester Township	3616 Coolidge St	Conklin, MI 49426		
	Kent County	826 Fuller NE	Grand Rapids, MI	336-3265	www.co.kent.mi.us/
	MSU Extension office				
	Community Development	4300 Cascade Rd SE	Grand Rapids, MI 49504	336-4200	
	Drain Commissioner	1500 Scribner, NW	Grand Rapids, MI 49504	336-3688	
	Environmental Health			336-3089	
	General Sanitation Complaints			336-3089	
	Park Commission	1500 Scribner, NW	Grand Rapids, MI 49504	336-3697	
	Recycling Information			336-2570	www.co.ottawa.mi.us
	Road Commission	1500 Scribner, NW	Grand Rapids, MI 49504	242-6900	
	Ottawa County				
	Community Action Agency	12251 James St	Holland MI 49423	393-5697 ext. 5697	
	Community Programs			1-866-512-4357	
	Drain Commission	414 Washington St.	Grand Haven, MI 49417	846-8220	
	Geographic Information System	12220 Fillmore St	West Olive, MI 49460	738-4881	
	Environmental Health	3100 Port Sheldon Rd	Hudsonville, MI 49428	662-3100	
	Parks & Recreation	12220 Fillmore St	West Olive, MI 49460	738-4810	
	Recycling/Household Hazardous Waste	12251 James St	Holland, MI 49423	393-5638	
	Road Commission	526 W Cleveland St	Coopersville, MI	837-8000	
	Soil Erosion/Sediment Control Agency	414 Washington	Grand Haven, MI 49417	846-8222	

Field of Interest	Contact Name	Address		Phone (616 pre-fix)	Internet
Federal Departments	Agriculture Department	3260 Eagle Park Dr NE	Grand Rapids		
	APHIS - Plant Protection & Quarantine	350 Ottawa NW	Grand Rapids	356-0600	
	Natural Resources Conservation Service	3260 Eagle Park Dr NE	Grand Rapids	942-4111	
	Rural Development	3260 Eagle Park Dr NE	Grand Rapids	942-4111	
	Department of Interior	U.S. Fish and Wildlife Service Division Law Enforcement		942-2381	
U.S. Senators	Carl Levin	459 Russell Senate Office Building	Washington D.C. 20510	616 456- 2531 202 224-	www.senate.gov
	Debbie Stabenow - Stabenow.senate.gov	United States Senate	Washington D.C. 20510	4822	
	Vern J. Ehlers, U.S. Congress	3rd District			
State of Michigan	Department of Agriculture	350 Ottawa NW	Grand Rapids, MI	356-0600	
	House of Representative				
	Department of Environmental Quality			1-800-662- 9278	
Libraries	Comstock Park Library	3943 West River Drive	Grand Rapids, MI 49321	647-3860	
	Walker Library	4293 Remembrance	Walker MI 49544	647-3970	
	Alpine Library	5255 Alpine Ave	Comstock Park MI 49321	647-3810	

	TABLE 3. PROJECT PARTNERS							
Agencies/Companies/Nonprofits	Cities / Villages	Townships	Government Departments					
Center for Environmental Studies	City of Walker	Alpine Township	Natural Resources Conservation Service					
Herman Miller, Inc.		Chester Township	Grand Rapids Parks and Recreation					
Land Conservancy of West Michigan		Tallmadge Township	Ottawa County Conservation District					
Marne Conservation Club		Wright Township	Kent County Drain Commission					
Marne Lions Club			Kent County Road Commission					
Michigan Farm Bureau			Ottawa County Road Commission					
The Land Conservancy			Michigan Department of Transportation					
The Nature Conservancy			Ottawa County Drain Commission					
Timberland RC&D			Kent County Conservation District					
West Michigan Environmental Action Council								