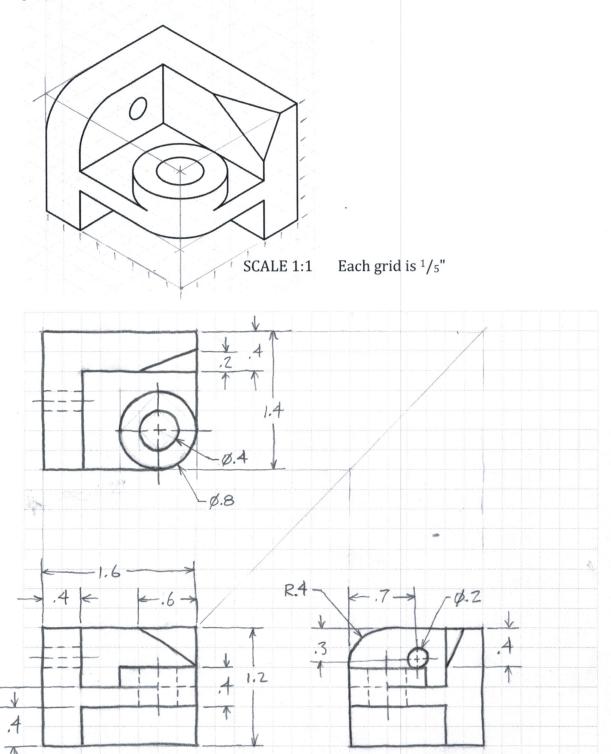
PRINT NAME	

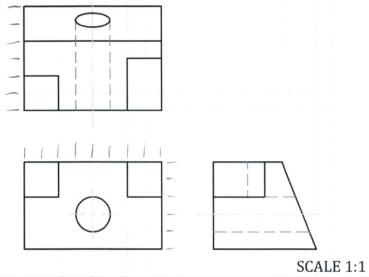
Instructions:

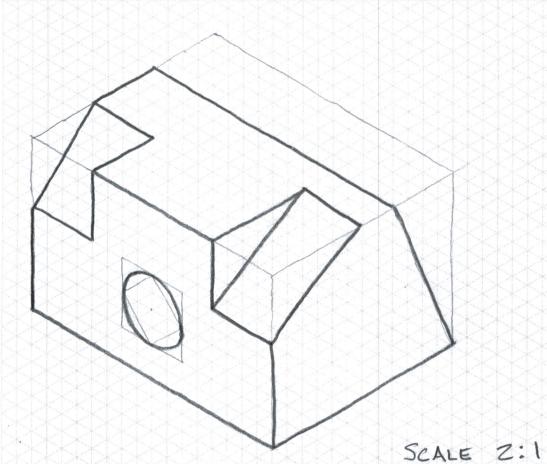
- One 8¹/₂" x 11" sheet of notes is allowed and must be turned in with the exam.
- You may use a pencil, eraser, and straight edge.
- No electronic devices may be used.
- Try to pace yourself. Look over the entire exam and work on the things you know you can do first. If you get stuck on something, <u>move on</u>!
- Good Luck !!


Section	Score	Points Possible	Points Earned
I	Sketching – Orthographic Projection & Dimensioning	15	
II	Sketching – Isometric	10	
III	Sketching – Advanced Iso/Ortho	15	
IV	Sketching – Section View and Hole Callouts	15	
V	Sketching – Auxiliary View	10	
VI	Fits and Tolerances	15	
VII	Tolerance Stack Analysis	10	
VIII	Threaded Fasteners	10	
Total		100	/100

By my signature below, I hereby testify that I have neither given nor received any assistance on this exam and I have obeyed the Honor Code (an engineering student will not lie, cheat, or steal, or tolerate those who do). All work on this exam is my own. I have not and will not discuss this exam with any other student or prospective student.

Signature:	 Date:
- 6	

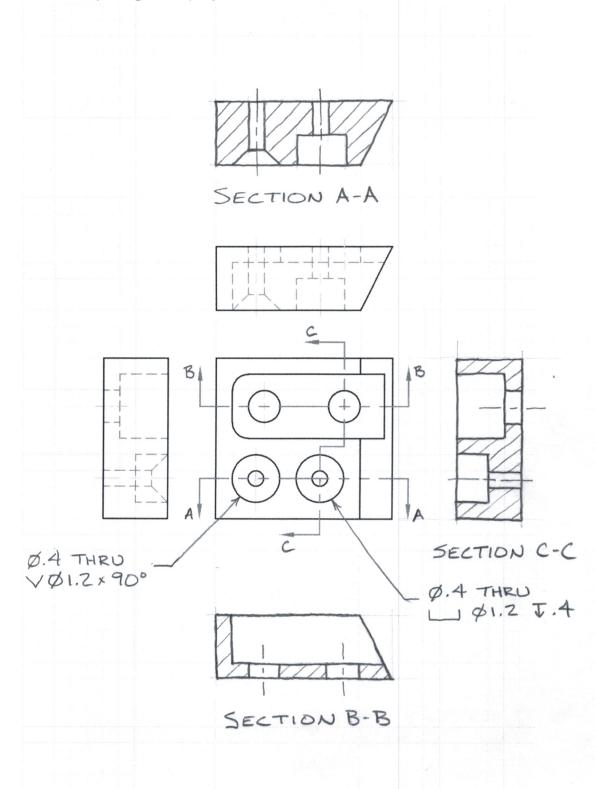

I Orthographic Projection and Dimensioning (15 pts)


Create a *fully-dimensioned* orthographic sketch of the following object. Use 3rd angle projection and include front, top, and right-side views. Note: all holes are thru-holes.

II Isometric Sketching (10 pts)


Create an Isometric sketch of the following object, which is shown using 3rd angle projection. No dimensions are required.

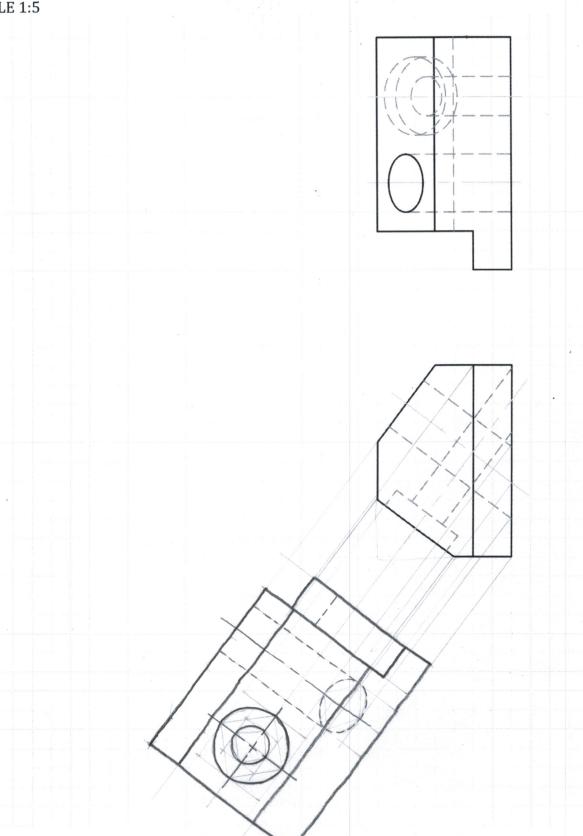
III Advanced Sketching (15 pts)


Given top and right-side views of the following object, in $3^{\rm rd}$ angle projection, sketch the front view and an isometric view. No dimensions are required.

IV Section View and Hole Callouts (15 pts)

Given the following orthographic views in third angle projection, draw three section views, based on the provided cutting plane lines. <u>Add appropriate callouts for the machined (counterbored/countersunk) holes</u>.

SCALE 1:2 (each grid is 1/5")



V Auxiliary View (10 pts)

Given the following orthographic views in third-angle projection, create a *full* auxiliary view to show the true shape of the counterbored hole. No dimensions are required.

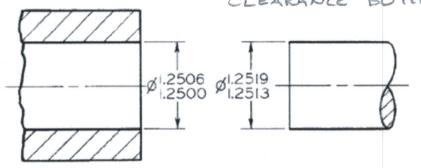
SCALE 1:5

Top of Page

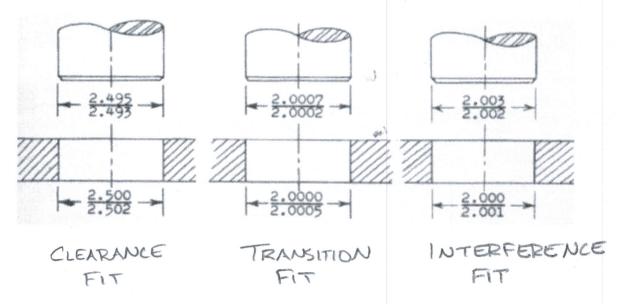
VI Fits and Tolerances (15 pts)

Given the dimensions as shown in the below

figure, determine:


- a. the tolerance of the hole 1.2506-1.2500 = .0006
- b. the tolerance of the shaft 1.2519 1.2513 = .0006
- c. allowance = MIN CLEARANCE = 1.2500 1.2519 = -.0019
- d. maximum clearance 1.250

1.2506 - 1.2513 = -.0007


e. Define what fit is the assembly and

explain why.

LARGER THAN THE HOLE (MIN & MAX) CLEARANCE BOTH NEGATIVE).

Determine the type of fit in the following example:

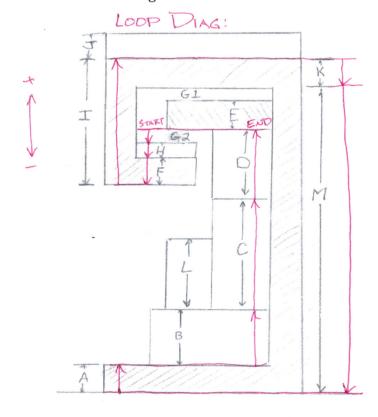
VII Tolerance Stack Analysis (10 points)

Both parts of this question refer to the blocks assembled in the figure below. The values of the labeled dimensions are shown in the table below. The last two columns are for your use, but are not graded.

Part 1:

Determine the following for the gap labeled G2 using a Worst Case Analysis. All units are in mm. (place answer in boxes for c-f):

- a) (3 pts) Loop Diagram (show below)
- b) (2 pts) Gap Equation (show below)
- c) (0.5 pts) Nominal Gap Value
- d) (0.5 pts) Gap Tolerance (+/-)
- e) (0.5 pts) Max Gap and
- f) (0.5 pts) Min Gap.


1.75	
±.76	
2.51	
.99	

	Nominal		Adjusted	Adjusted
	Height	Tolerance	Nominal	Tolerance
Α	2	± 0.1	+ Z	1.1
В	4	± 0.07	+ 4	±,07
С	8	± 0.1	+ 8	t.l
D	5	± 0.1	+ 5	tal
Е	2	+0.1 / -0.0		
F	2	± 0.08	- 2	80. ±
Н	1	±0.01	- 1	± .0(
1	9	+0.2 / -0.0	+ 9.1	±.1
J	2	± 0.1		
K	2	± 0.05	- 2	±.05
L	5	± 0.1		
M	21.5	+0.0 / -0.3	-21.35	±.15

Part 2:

(3 pts) Assuming that parts D and H are made in house, how would you modify the nominal values and tolerances of one (or both) of those parts to get the gap to be between 0.5 and 2.0, inclusive? Place your answers in the table to the right.

	Recommended	Recommended	
	Nominal	Tolerance	
D	4.5	±.09	
Н	l	±.01	

PART 7: HAVE 1.75±,76 WANT 1.25±.75=GZ

TO MAKE THE GAP SMALLER, MAKE D SMALLER OR H BIGGER.

CHOOSE D=4,5 H=1

ALSO, REDUCE TOL BY . DI

CHOOSE D ±.09

VIII Threaded Fasteners

1. (4 pts) Determine the minimum tap drill depth for a 1/2-13 coarse threaded tapped hole by using a 7-thread tapered chamfer tap, given that the desired thread engagement length must be 1.0 inches.

MIN THREAD DEPTH: I LUCH

TAP CHAMFER: 7/13 INCH

+ EXTRA THREAD: 1/13 INCH

18/13 INCH & 1.615 INCH MIN

2. (3 pts) Identify the different components of each thread note:

M10 x 1.5 – 4h6h – LH THRU

M: METRIC

10: 10 mm MAT DIA

1.5: 1.5 mm PITCH

4h6h: TOLERANCE

LH : LEFT-HAND THREAD

THRU: THREADS SHOULD

EXTEND THROUGH PART

#6 - 32 UNC - 2 β - RH Ψ 0.75

#6: NOMINAL SIZE

32: 32 THREADS/INCH

UNC: UNIFIED COARSE THREAD

Z= THREAD CLASS (NORMAL)

B: INTERNAL THREAD

RH: RIGHT-HAND

TO.75: MW THREAD DEPTH 0,75 IN.

3. (3 pts) Write the thread note for a 7/16 fine thread. What is the pitch?

7/16-20 WF

PITCH IS TO INCH

Nominal Size, in.	Basic Major	Course		Fine UNF		Extra Fine UNEF	
	Diameter (D)	Thds. Per in.	Tap Drill Dia.	Thds. Per in.	Tap Drill Dia.	Thds. Per in.	Tap Dril Dia.
#0	0.060		***	80	3/64		.,,
#1	0.0730	64	0.0595	72	0.0595	***	>
#2	0.0860	56	0.0700	64	0.0700	***	> + +
#3	0.0990	48	0.0785	56	0.0820	. + >	4 + 4
#4	0.1120	40	0.0890	48	0.0935		
#5	0.1250	40	0.1015	44	0.1040	**>	
#6	0.1380	32	0.1065	40	0.1130	***	***
#8	0.1640	32	0.1360	36	0.1360	***	> 4 •
#10	0.1900	24	0.1495	32	0.1590	***	,,,
#12	0.2160	24	0.1770	28	0.1820	32	0.1850
1/4	0.2500	20	0.2010	28	0.2130	32	7/32
5/16	0.3125	18	0.257	24	0.272	32	9/32
3/8	0.3750	16	5/16	24	0.332	32	11/32
7/16	0.4375	14	0.368	20	25/64	28	13/32
1/2	0.5000	13	27/64	20	29/64	28	15/32
9/16	0.5625	12	31/64	18	33/64	24	33/64
5/8	0.6250	11	17/32	18	37/64	24	37/64
11/16	0.675				***	24	41/64
3/4	0.7500	10	21/32	16	11/16	20	45/64