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Abstract 
 
 

 Plot photography can provide a quick, robust method to measure vegetation, especially in 

polar environments where logistics can be expensive and challenging. The success and 

widespread adoption of plot photography in the Arctic hinges on the accuracy of image analysis 

and data product interpretation. The relative cover of eight vegetation classes was estimated 

using a point frame and digital camera across thirty, 1-m2 plots at Utqiaġvik, Alaska from 2012 

to 2021. Geographic object-based image analysis (GEOBIA) was applied to generate objects and 

classify the three band (red, green, blue) images. Machine learning classifiers (random forest, 

gradient boosted model, classification and regression tree, support vector machine, k-nearest 

neighbor) were applied, and random forest performed the highest (60.5% overall accuracy). 

Objects were classified reliably in six out of the eight vegetation classes using the random forest 

classification, including bryophytes, forbs, graminoids, litter, shadow and standing dead. 

Deciduous shrubs and lichens were not reliably classified.  

We also assessed whether estimates of relative vegetation cover from plot photography 

were comparable to estimates using the point frame. Based on Spearman-Rank correlations 

within each year, graminoid cover was consistently, positively correlated. Most of the remaining 

vegetation classes showed moderate positive associations except for litter and standing dead, 

which showed a negative association. We then used multinomial regression models to gauge if 

the cover estimates from plot photography could accurately predict the abundance estimates from 

the point frame across space or time. Currently, our approach to image analysis is best suited to 

detect large shifts in composition over spatial gradients rather than the more subtle temporal 

shifts in vegetation over time. Together these results suggest that plot photography coupled with 
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semi-automated image analysis maximizes time, funding, and available technology to monitor 

vegetation cover in the Arctic.  
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Chapter 1 

Introduction 

The Arctic is warming at twice the global rate due to climate change (Allen et al., 2018). 

It is likely that the average temperatures in the Arctic will increase by 6 to 10°C within the next 

100 years (Allen et al., 2018). Polar regions influence feedback loops that regulate global 

temperatures and climate, carbon release, and vegetation dynamics (Chapin et al., 2005; Pearson 

et al., 2013; Schuur et al., 2015). Vegetation is growing taller in response to experimental 

warming in the Arctic, especially shrubs and graminoids (Elmendorf et al., 2012a; Myers-Smith 

et al., 2011). Bryophytes and lichens are decreasing in abundance, while litter and shrubs are 

increasing in abundance (Elmendorf et al., 2012a; Elmendorf et al., 2012b). Changes in 

vegetation composition are likely to affect hydrology, the duration and thickness of snow cover, 

the amount of solar radiation reflected from the earth’s surface, and the forage available for 

wildlife and indigenous human populations (Joly et al., 2009; Kelsey et al., 2021; Sturm et al., 

2005; Wrona et al., 2016). It is critical to monitor vegetation cover, structure, and community 

dynamics over time in order to understand and predict widespread change across the Arctic 

(Allen et al., 2018; Post et al., 2019). 

In 1990, the International Tundra Experiment (ITEX) was established by an assembly of 

Arctic researchers (Webber & Walker, 1991). A warming experiment was developed using open-

top chambers (OTCs) to preview the effects of warmer temperature on Arctic vegetation. Open-

top chambers passively raise the temperature within a vegetation plot from 1 to 3°C (Henry & 

Molau, 1997; Hollister et al., 2006). Protocols were developed and shared across the 

international research network to measure vegetation growth, abundance, productivity, and 

response to warming (Molau & Mølgaard, 1996). Research efforts have expanded to include 



13 
 

phenology, plant traits, and carbon release in recent years (Bjorkman et al., 2018; Oberbauer et 

al., 2013; Oberbauer et al., 2007; Prevéy et al., 2017). ITEX is considered an important research 

network since standardized protocols allow for coordinated syntheses and broad conclusions 

about the impacts of climate change on the Arctic (Fraser et al., 2012). 

The International Tundra Experiment Arctic Observing Network (ITEX-AON), which is 

funded by the National Science Foundation (NSF), is an assembly of researchers based in the 

United States at Grand Valley State University (GVSU), University of Texas at El Paso (UTEP), 

Florida International University (FIU), and University of Alaska Anchorage (UAA). ITEX-AON 

maintains long-term vegetation measurements across four research sites in northern Alaska: 

Utqiaġvik, Atqasuk, Toolik Lake, and Imnavait Creek. The four research sites were established 

in 1994 (Utqiaġvik), 1995 (Atqasuk), 1994 (Toolik Lake) and 2016 (Imnaviat Creek) (Hollister, 

2003; May et al., 2020; Wahren et al., 2005).  

The research in this master’s thesis relies on two long-term data sets collected from thirty 

vegetation plots in the Arctic System Science Grid (ARCSS) at Utqiaġvik, Alaska (Brown et al., 

2000). Vegetation abundance and cover were sampled using the point frame method from 2010 

to 2021. The same set of plots were photographed annually at the plot-level from 2012 to 2021. 

The plot photographs contain three bands (red, green, blue) in the visible electromagnetic 

spectrum. These photographs have not been incorporated into any published research to date. 

 This thesis analyzes the plot photographs using geographic object-based image analysis 

(GEOBIA). GEOBIA is a sub-discipline that originated from object-based image analysis 

(OBIA) (Hay & Castilla, 2008, 2006). GEOBIA is specific to the field of remote sensing, as this 

refers to an object-based approach applied to remotely sensed images. GEOBIA is an image 

analysis technique with two, fundamental steps: segmentation and classification. Image objects, 
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or objects, are generated from groups of homogeneous pixels determined by segmentation 

algorithms. Then, the objects are labeled according to class. This process is iterative and 

adaptive, so additional spatial, spectral, and textural features in an image, ancillary data layers, 

and expert user knowledge can also be incorporated to improve the results (Platt & Rapoza, 

2008). 

The shift from pixel-based analysis to OBIA occurred in the early 2000’s (Blaschke, 

2005; Blaschke et al., 2000). Images were becoming more readily available at a higher 

resolution, which rendered a pixel-based approach inappropriate and inaccurate (Lang, 2008). 

The first instances of an object-based approach to remotely sensed imagery were in aerial or 

satellite imagery of agricultural and urban landscapes (Hay & Castilla, 2006). Since then, an 

object-based approach has been applied to aerial and satellite images in polar regions, but this 

approach has been applied rarely to near-surface digital images of the Arctic or Antarctic (Chen 

et al., 2010; King et al., 2020; Liu & Treitz, 2016). 

 
Purpose 

 The purpose of this research is to: (1) classify tundra vegetation cover from repeat plot 

photographs at Utqiaġvik, Alaska using geographic object-based image analysis (GEOBIA); (2) 

compare the estimates of vegetation cover from the plot photographs to the estimates from in situ 

point frame-based sampling; (3) gauge the accuracy and overall utility of plot photography and 

digital image analysis; and (4) predict vegetation abundance across space and time using the 

vegetation cover estimates from plot photography. 

 
Scope 
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Vegetation cover was collected from thirty vegetation plots within the Arctic System 

Science grid (ARCSS) at Utqiaġvik, Alaska. There are ninety-eight vegetation plots in the 

ARCSS grid. This methodology could be extended to the entire grid, in addition to other tundra 

communities with similar vegetation structure, characteristics, and composition in the Arctic. 

Observations at the fine-scale may improve and validate observations of terrestrial change at 

coarser scales. 

 
Assumptions 

 There are four core assumptions in this research study: (1) The inherent variability of the 

total data set (n = 2,159,693 objects) from the repeat plot photographs is captured and reflected 

appropriately in the labeled data set (n = 15,000 objects). In other words, the models are trained 

and validated appropriately on the subset of objects in the labeled data set. (2) The local 

vegetation composition is summarized appropriately in the thirty vegetation plots within the 

ARCSS grid. (3) The true baseline, or value which represents the exact amount of vegetation 

cover in a plot, is unknown, regardless of the vegetation sampling method. Point frame-based 

sampling and plot photography generate estimates of vegetation cover and abundance since error 

can be minimized but not eliminated from these methods. (4) The comparison is not direct 

between the cover estimates generated from point frame-based sampling and plot photography. 

The cover estimates from the point frame are calculated from every available canopy layer, not 

just the top canopy layer. The cover estimates from plot photography are calculated from all 

visible objects in the superficial, two-dimensional view of the plot. 

 
Hypotheses 
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 This research addresses the four questions: 1. Which model is optimal for classification 

of near surface, high resolution digital images of Arctic vegetation? 2. Which vegetation classes 

can be accurately estimated? Which classes cannot be? 3. How do estimates from plot 

photography and automated image analysis compare with estimates from the point frame 

method? 4. Can we predict vegetation abundance across space and time using the vegetation 

cover estimates from plot photography?  

We assert that all classes can be accurately estimated, given the quality and high spatial 

resolution of the images. Although there is a lack of spectral information available for analysis in 

red, green, and blue images, other geometric and texture-based metrics may compensate for it. 

Point frame measurements have been proven as reliable indicators of vegetation cover. We 

expect that the vegetation cover estimates from plot photography will complement cover 

estimates from the point frame. It is unlikely that the estimates will match exactly due to 

methodological differences between the two methods of sampling. 

 
Significance 

Although general greening and browning trends can be determined at a global scale, there 

is significant variability in the magnitude and direction of the trends. In other words, vegetation 

change is not uniform across time and space (Bhatt et al., 2013, 2017; Myers-Smith et al., 2020). 

Trends in vegetation can be observed through in situ field studies at the plot level or remotely 

sensed through aerial or satellite platforms, however, these results may not correspond across 

scales or between sensors (Myers-Smith et al., 2020). There is a need for improved integration of 

in situ field observations with remotely sensed observations across varying scales (Davidson et 

al., 2016; Langford et al., 2016; Shiklomanov et al., 2019). This study helps bridge the gap 
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between field and remotely sensed observations and communicate information across platforms, 

validating or challenging existing observations and conclusions. 

The framework within this thesis could be extended to digital images acquired at 

comparable, near-surface scales. Images taken from low-altitude aerial platforms have high 

spatial resolution, which may be comparable to the resolution of near-surface digital images 

(Anderson et al., 2016; Fraser et al., 2016; Malenovský et al., 2017; Richardson et al., 2018). 

Some minor changes may be necessary to the workflow, including a different set of parameters 

for segmentation, but the framework can be applied to other digital images. We expect that the 

workflow will continue to improve with technical, scientific, and practical revisions over time.  

Our contribution to the existing body of research is important because few researchers 

have examined plot photographs using object-based image analysis (Laliberte et al., 2007; 

Luscier et al., 2006; Michel et al., 2010), and even fewer have assessed alpine or tundra 

vegetation cover from the photographs using this approach (Chen et al., 2010; King et al., 2020; 

Liu & Treitz, 2016). Vegetation cover was estimated in twenty-six vegetation plots in Nunavut, 

Canada in 2007 using an object-based approach on plot photography (Chen et al., 2010). The 

cover estimates of a few, dominant vegetation species were compared using a digital grid 

overlay, visual inspection, and semi-automated image analysis. This approach was the earliest, 

published example of object-based image analysis applied to plot photographs of tundra 

vegetation. Although the results were accurate, the methodology relied on several manual 

modifications, therefore it was too time-consuming and labor-intensive to adapt over a larger 

data set. There was no formal accuracy assessment to determine the accuracy of the object-based 

classification. Additionally, the approach was not extended to analyze broad vegetation classes, 

nor assess the change in vegetation cover over time.   
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More recently, vegetation cover, change, and bryophyte vigor were estimated in 

Antarctica using an object-based approach on plot photography from 2003 to 2014 (King et al., 

2020). In this study, the vegetation classes were broad, consisting only of bryophytes, lichens, 

rock, and shadow. King et al. were successful with their approach, but their vegetation classes 

were few and visually distinctive, marked by clear boundaries between vegetation types (2020). 

Northern tundra communities, especially mesic vegetation communities, tend to display high 

species richness and complexity, necessitating a greater number of vegetation classes (van der 

Welle et al., 2003). This study also failed to validate their results with complementary data from 

an in situ field survey. 

The research in this thesis extends previous work by applying the semi-automated image 

analysis approach to the vegetation in northern Alaska, quantifying the cover of eight, complex 

vegetation classes from plot photographs. We also use the estimates of vegetation cover from the 

plot photographs to predict vegetation abundance over space and time, scaling our approach to 

tundra communities with similar composition.  

 
Definitions 

Broad growth form: An alternative grouping to the classification of plants by scientific species, 

family, or genus. Vegetation species are grouped into broad forms, or categories, which are 

functionally-related: bryophytes (mosses), deciduous shrubs, evergreen shrubs, forbs (non-

woody flowering plants), graminoids (grasses, sedges, rushes), lichen, litter, and standing dead. 

It is easier to detect broad trends in vegetation communities using aggregate groups of 

vegetation. 

Geographic object-based image analysis (GEOBIA): This framework is based on object-based 

image analysis, where a two-step, iterative process may result in a classified image. Image 
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objects are created (segmentation) and classified (classification). In order to distinguish object-

based image analysis from related disciplines in biomedical and computer science, geographic 

object-based image analysis (GEOBIA) has been accepted as the framework that often 

accompanies object-based image analysis of remotely-sensed imagery. 

Inflorescence: The flowering part(s) of a plant. 

In situ: An on-site or local observation. 

Machine learning classifiers: Machine learning classifiers may also be referred to as machine 

learning algorithms or models. Models aim to learn and unveil patterns in a data set based on 

training, validating, and testing samples. Models can be developed for classification or 

regression-based tasks. Classification predicts a discrete value, usually in the form of a class 

label or category. Regression predicts a continuous value. 

Resolution: Describes the spatial resolution, or visible detail, of an image. High, medium, and 

low resolutions vary in their definitions depending on the platform of measurement. For satellite 

imagery, 0 to 2 meters is generally accepted as high resolution, 2 to 20 meters is medium 

resolution, and more than 20 meters is low resolution. This same guideline does not apply to 

images acquired at the plot-level or low-altitude aerial level. In this study, images were 

considered high resolution if the objects of interest were at least three to five times larger than 

the pixels from which they were made. 

Vegetation abundance: Abundance is calculated from the number of counts of a vegetation 

species within a plot. Relative abundance is calculated by the counts of one vegetation species 

divided by the counts of all vegetation species. 
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Vegetation cover: Cover is calculated from the area occupied by a vegetation species within a 

plot. Relative cover is calculated by the area of one vegetation species divided by the area of all 

vegetation species.  
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Abstract 

 Plot photography can provide a quick, robust method to measure vegetation, especially in 

polar environments where logistics can be expensive and challenging. The success and 

widespread adoption of plot photography in the Arctic hinges on the accuracy of image analysis 

and data product interpretation. The relative cover of eight vegetation classes was estimated 

using a point frame and digital camera across thirty, 1-m2 plots at Utqiaġvik, Alaska from 2012 

to 2021. Geographic object-based image analysis (GEOBIA) was applied to generate objects and 

classify the three band (red, green, blue) images. Machine learning classifiers (random forest, 

gradient boosted model, classification and regression tree, support vector machine, k-nearest 

neighbor) were applied, and random forest performed the highest (60.5% overall accuracy). 

Objects were classified reliably in six out of the eight vegetation classes using the random forest 

classification, including bryophytes, forbs, graminoids, litter, shadow and standing dead. 

Deciduous shrubs and lichens were not reliably classified.  

We also assessed whether estimates of relative vegetation cover from plot photography 

were comparable to estimates using the point frame. Based on Spearman-Rank correlations 

within each year, graminoid cover was consistently, positively correlated. Most of the remaining 

vegetation classes showed moderate positive associations except for litter and standing dead, 

which showed a negative association. We then used multinomial regression models to gauge if 

the cover estimates from plot photography could accurately predict the abundance estimates from 

the point frame across space or time. Currently, our approach to image analysis is best suited to 

detect large shifts in composition over spatial gradients rather than the more subtle temporal 

shifts in vegetation over time. Together these results suggest that plot photography coupled with 
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semi-automated image analysis maximizes time, funding, and available technology to monitor 

vegetation cover in the Arctic. 

Keywords 

Abundance; Arctic; Cover; Geographic Object-Based Image Analysis (GEOBIA); Handheld 

digital camera; Plant; Plot photography; Point frame; Vegetation change. 

 
Introduction 

The Arctic is changing in response to warmer temperatures caused by global warming 

(Allen et al., 2018). Warmer temperatures in the Arctic lead to longer growing seasons, greater 

thaw depth, and altered snow cover and accumulation, which influences the composition of 

tundra vegetation communities (Kelsey et al., 2021; Leffler et al., 2016; Shiklomanov et al., 

2010). As the composition shifts in tundra vegetation communities, climate-related feedback 

cycles may be amplified, prompting widespread change in and beyond the Arctic (Chapin et al., 

2005; Pearson et al., 2013). In order to assess and forecast change across a warming Arctic, it is 

critical to monitor plant cover, structure, and community dynamics over time (Allen et al., 2018; 

Post et al., 2019).  

Satellite-derived indices have documented widespread spectral greening across the Arctic 

for more than 40 years (Guay et al., 2014; Zhu et al., 2016), while spectral browning has also 

been detected in the past decade by some studies (Bhatt et al., 2013; de Jong et al., 2011; 

Phoenix & Bjerke, 2016). Spectral greening trends suggest an increase in vegetation productivity 

as a result of warming, whereas spectral browning trends suggest a decrease in vegetation 

productivity (Myers-Smith et al., 2020). Satellite-based observations and trends must be 

validated by ground-based observations, but these data do not always correspond spatially or 

temporally (Myers-Smith et al., 2020). It is not well understood how patterns detected by 
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satellites are related to patterns observed on the ground. Plot-level photographs, low-altitude 

drones, and manned aerial aircraft offer the potential to bridge the information gap between 

ground-based and satellite-based observations in the Arctic (Anderson et al., 2016; Fraser et al., 

2016; King et al., 2020; Liu & Treitz, 2016; Malenovský et al., 2017). 

Ground-based observations validate remotely-sensed observations through precise, 

accurate, and detailed measurements of tundra vegetation. The point frame method is a standard 

field technique for measuring in situ vegetation cover and abundance in the Arctic (Molau & 

Mølgaard, 1996). Although this method is accurate, repeatable, and robust, it is costly in terms of 

time and energy (May & Hollister, 2012). It can be challenging to generate a sufficiently large, 

representative sample size using this method, since vegetation plots are likely to be sampled at a 

lower temporal frequency (May & Hollister, 2012). Additionally, traditional approaches to 

vegetation monitoring in the Arctic are confined to a short growing season (less than 3 months), 

extensive logistical costs, and limited access to remote research sites. The constraints of 

conventional field surveys have encouraged the use of remote sensing methods in the Arctic 

(Dronova, 2015; Shiklomanov et al., 2019).  

Plot-level photography may be more efficient, quicker, and easier to record than 

traditional field surveys. Plot photography may increase the sampling extent and frequency at a 

study site, and a photographic record can be analyzed retroactively (Booth et al., 2005; King et 

al., 2020). The error associated with handheld digital cameras remains consistent, whereas 

different observer bias may be introduced seasonally in field surveys (Chen et al., 2010; Luscier 

et al., 2006). Plot photographs are also advantageous because each image captures a complete 

bird’s eye (nadir) view of the vegetation, whereas the analysis of the point frame data is limited 

to the point density of the sampling frame (Chen et al., 2010; Laliberte et al., 2007). Despite the 
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obvious advantages, the success of plot photography is reliant on the accuracy of image 

interpretation and analysis (Dronova, 2015). 

Imagery analysis has transitioned from pixel-based to object-based image analysis over 

recent years (Hay & Castilla, 2008, 2006). In order to distinguish object-based image analysis 

from related approaches in the biomedical and computer sciences, geographic object-based 

image analysis (GEOBIA) has been accepted as the framework that accompanies object-based 

image analysis of remotely-sensed imagery (Hay & Castilla, 2008, 2006). Image objects, or 

objects, are generated from groups of homogeneous pixels through segmentation, then assigned 

to a class through classification. Spatial, spectral, and other features within an image, additional 

data layers, and expert user knowledge can be incorporated into the classification procedure, 

which further offsets object-based from pixel-based approaches (Platt & Rapoza, 2008). In this 

study, we refer to the GEOBIA framework as an object-based approach, or GEOBIA. Image 

objects and objects are used interchangeably. 

As high resolution imagery becomes more accessible due to technological advancements, 

GEOBIA is being widely used (Blaschke et al., 2014; Chen et al., 2018; Hay & Castilla, 2008). 

Advantages of the object-based approach are summarized elsewhere (see Blaschke et al., 2014; 

Chen et al., 2018; Hussain et al., 2013). In general, object-based approaches have been shown to 

be accurate in analyzing high resolution imagery, especially in urban and agricultural landscapes 

(Myint et al., 2011; Ye et al., 2018). 

GEOBIA has been used to evaluate vegetation cover primarily at the aerial and satellite 

levels (Ma et al., 2017). Fewer studies have applied GEOBIA to near-surface digital images 

(Laliberte et al., 2007; Luscier et al., 2006; Michel et al., 2010), especially in the Arctic (Chen et 
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al., 2010; King et al., 2020; Liu & Treitz, 2016). To our knowledge, no published studies have 

examined vegetation cover change from plot-level photographs in the Arctic, yet.  

Chen et al. (2010) examined vegetation cover using an object-based approach on plot 

photographs from 2007 in the Arctic. The cover estimates of a few, dominant vegetation species 

were compared using a digital grid overlay, visual inspection, and semi-automated image 

analysis. This approach was the earliest example of object-based image analysis on plot 

photographs of tundra vegetation. This approach was the earliest, published example of object-

based image analysis applied to plot photographs of tundra vegetation. Although the results were 

accurate, the methodology relied on several manual modifications, therefore it was too time-

consuming and labor-intensive to adapt over a larger data set. There was no formal accuracy 

assessment to determine the accuracy of the object-based classification. Additionally, the 

approach was not extended to analyze broad vegetation classes, nor assess the change in 

vegetation cover over time. 

More recently, King et al. (2020) examined vegetation cover, change, and vigor using an 

object-based approach on plot photographs from 2003 to 2014 in Antarctica. The vegetation 

classes were limited to a few broad categories (bryophytes, lichens, rock, and shadow) with 

visually distinctive boundaries. Northern tundra communities, especially mesic vegetation 

communities, are complex and diverse, so the rule-based framework from King et al. (2020) is 

not sufficient nor replicable in the Arctic, since the vegetation classes are not comparable 

between the two studies (van der Welle et al., 2003). King et al. also failed to validate their 

results with complementary data from an in situ field survey (2020). 

The research in this thesis extends previous work by applying the semi-automated image 

analysis approach to the vegetation in northern Alaska, quantifying the cover of eight, complex 
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vegetation classes from plot photographs. We also use the estimates of vegetation cover from the 

plot photographs to predict vegetation abundance over space and time, scaling our approach to 

tundra communities with similar composition. 

The following questions were addressed in this study: 

1. Which machine learning classifier (model) is optimal for classification of near 

surface, high resolution digital images of Arctic vegetation? 

2. Which vegetation classes can be accurately estimated? Which classes cannot be? 

3. How do estimates from plot photography and automated image analysis compare with 

estimates from the point frame method? 

4. Can we predict vegetation abundance across space and time using the vegetation 

cover estimates from plot photography? 

We investigate if images from inexpensive, handheld digital cameras can be used to 

accurately estimate vegetation cover from 2012 to 2021 at Utqiaġvik, Alaska. We use an object-

based approach to analyze Arctic tundra vegetation cover from high resolution digital images. 

Machine learning classifiers are investigated and compared in order to generate an accurate 

vegetation classification across the repeat plot photographs. Spearman-rank correlations reveal 

the degree of association between the cover estimates from the point frame and plot photography 

sampling methods. Multinomial regression models demonstrate whether the cover estimates 

from plot photography can predict abundance estimates from the point frame sampling method. 

Ultimately, we determine if plot photography is useful in estimating vegetation cover and 

change. We also compare the cost and benefit of both sampling methods in terms of overall 

investment (time, logistics, effort) and accuracy. 

 
Materials and Methods 
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Study Site 

In the early 1990’s, a sampling grid was established at Utqiaġvik (formerly Barrow), 

Alaska (71˚19’N, 156˚36’W) by the Arctic System Science Program (ARCSS) to monitor long-

term, landscape-level terrestrial change (Brown et al., 2000). Ninety-eight, 1-m2 vegetation plots 

were installed at 100-m intervals across a 1-km2 grid (Figure 2.1). Plots were not artificially 

warmed or manipulated. Plots are representative of the local variability in topography, moisture, 

soil, and vegetation cover at Utqiaġvik. In 2010, 30 plots were selected for annual vegetation 

sampling. The analysis in this study is focused on the 30 vegetation plots.  

This region (W1) is defined as a wetland dominated by sedges, grasses, and mosses by 

the Circumpolar Arctic Vegetation Map (Raynolds et al., 2019). Vegetation plots were 

established over a drained lake basin and historic beach ridge. The habitat varies from moist 

ridges on ice-wedge polygons to saturated wet meadows. Average July temperatures for the 

region were historically recorded as 4oC, although the region has experienced a warming trend 

over the past several decades (Allen et al., 2018; Box et al., 2019; Brown et al., 1980). 

Continuous daylight is exhibited in the Arctic for most of the growing season, which extends 

from early June to late August. Peak growing season, where the plants are generally at their 

greenest and most productive, occurs from July through mid-August (Tieszan, 1978).  

Plot Photography 

Plot photographs were taken at breast-height (approximately 1-m above the ground), 

from a bird’s eye (nadir) point-of-view, centered above the plot. Although overcast conditions 

were preferred in order to reduce the amount of shadow in the photograph, lighting conditions 

were not always consistent. An object-based approach may combat inconsistent lighting by 
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relying on information that is independent from color, which reduces the error associated with 

inconsistent lighting conditions (King et al., 2020).  

Plot photographs were taken using either the Panasonic DMC-TS3 or Nikon Coolpix 

AW120 handheld cameras. Images were considered high resolution since the objects of interest 

were at least three to five times larger than the number of pixels in the objects (Blaschke et al., 

2014; Lang, 2008; Strahler et al., 1986). Automatic camera settings (no flash, fixed focus) were 

used to respond to natural ambient light in the environment. Images were recorded as 

uncompressed JPEG files with three visible spectral bands (red, green, blue) and an 8-bit, 

unsigned radiometric resolution, which ranged in digital values from 0 to 255. 

Plot photographs were mostly collected on a biweekly basis during the growing season 

(Table 2.1). One set of photos near peak growing season were analyzed each year, although some 

substitutions occurred for plot photos that were not vertically positioned, missing, or out-of-focus 

(Figure 2.2). Photographs were substituted if an adjacent or nearby sampling date contained an 

acceptable image. In total, 210 plot photographs were analyzed across seven sampling years 

(2012, 2013, 2014, 2015, 2018, 2019, 2021). In 2016, no photographs were recorded. In 2017, 

photographs were not suitable because they were taken prior to peak greenness and productivity. 

In 2020, photographs were of low resolution and incomplete. 

Image Preprocessing 

The general methodology is found in Figure 2.3. Images were geometrically corrected in 

ArcGIS Pro v. 2.8 (ESRI Inc.; Redlands, CA, United States). Each image was registered to four 

ground control points, or differential global positioning system (DGPS) coordinates, which 

marked the plot corners (spatial reference ESPG: 26904). The base of each stake was surveyed 

using high precision coordinates collected with a Trimble R8 GNSS Receiver and a 2 m survey 
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pole in 2013. Despite some tilt over time due to freeze-thaw cycles, the base remained 

permanently fixed at the base in one location. Coordinates were processed using the Post 

Processing Kinematic approach in Trimble Business Center v. 2.70 with an overall accuracy of 

± 1 to 5 cm (Trimble; München, Germany). 

Images acquired in 2013 were corrected first. These were considered to be the benchmark 

images, since the DGPS coordinates were also acquired in 2013. Once the benchmark images 

were corrected, the permanent physical markers were identified in each image. The markers, or 

tags, served as additional ground control points for the images across all other years (Figure 2.4). 

Occasionally, the plot image from 2012 was a better representation of the entire series of plot 

photographs (i.e., more tags are visible due to low water levels, or better camera angle). In these 

cases, the plot image from 2012 became the benchmark for the images across all other years. 

Root mean square error (RMSE) averaged 1.5 to 4.8 cm across sampling years (Table 2.2). In a 

few cases, the RMSE extended to 8.8 to 11.5 cm on the images with the most severe distortion as 

a result of poor camera angle. 

Orthorectification is preferred for accurate registration because it establishes a true nadir 

perspective, and it reduces the likelihood of an over- or under-valuation of plant cover (Clarke & 

Fryer, 1998). Although orthorectification is critical for a reliable analysis of pixel to pixel 

change, it is not critical for reliable analysis of change in relative vegetation cover within each 

plot in an image (King et al., 2020; Rogers et al., 1983). We assess the total number of objects, 

not the change between pixels, so the georeferencing procedure is acceptable for our analysis 

(King et al., 2020). 

Nearest neighbor resampling rectified the pixel sizes of all images to a coarser resolution 

of 0.05 cm, which standardized the resolution and allowed for direct comparison between images 
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(King et al., 2020; Laliberte et al., 2007). A background mask was generated to hide the exterior 

of the plot. When not enough tags were visible within the plot to clearly define the area of 

interest, the mask generated from the benchmark image was used. Both the georeferenced 

images and the corresponding masks were exported for use in eCognition. 

Segmentation and Preliminary Classification 

An object-based approach was applied to the plot photographs in eCognition Developer 

v. 9.5 (Trimble; München, Germany). Chessboard segmentation was applied to mask the 

background of each vegetation plot. Generally, the user must define an object size that exceeds 

the number of pixels in the image to mask the background. We achieved the chessboard 

segmentation with an object size of 15,000 to create two image objects: the area of interest and 

exterior of the plot. The exterior of the plot was removed from analysis.  

Image object candidates were generated across the entire image using the multi-

resolution segmentation algorithm (MRS), which is one of the most widespread, successful 

segmentation algorithms for OBIA (Baatz & Schaape, 2000; Benz et al., 2004). Image objects 

undergo an iterative algorithm, in which pixels are grouped into objects until the threshold 

(defined by scale) is reached. The threshold (scale) is user-defined, and it is weighted by shape 

and compactness.  This algorithm exacts a greater toll on the computer processor and memory, 

rendering it a slow technique. 

Image objects were weighted by user-defined parameters in multi-resolution 

segmentation, including scale, color, shape, smoothness, and compactness. Scale is unit-less, not 

intuitive, and depends on the heterogeneity in the image, but in general, a lower value for scale 

results in smaller image objects. A higher value for scale results in larger image objects. Shape 

values range from 0 to 1.0. A higher value for shape generates image objects that are weighted 
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more heavily by shape, whereas a lower value for shape generates image objects that are 

weighted more by color, or spectral information. Compactness ranges from 0 to 1.0. Lower 

compactness values generate image objects that are squiggly and irregular. Higher compactness 

values generate image objects that are blocky, rectangular, and compact.  

Although supervised and unsupervised approaches have been proposed for the automatic, 

objective selection of optimal segmentation parameters, there is no consensus among the remote 

sensing community (Hossain & Chen, 2019). We applied a supervised, stepwise approach to 

select the optimal segmentation parameters for our images in eCognition Developer v. 9.5 

(Trimble; München, Germany). Although some scientists argue that this method lacks 

repeatability and robustness, trial-and-error to maximize parameters can provide strong results 

(Blaschke et al., 2014; Liu et al., 2018; Radoux & Bogaert, 2017). All variables were held 

constant while independently adjusting each of the user-defined parameters to observe the effect 

of each parameter on the primitive image objects. Combinations of scale, compactness, and 

shape were identified as potential contenders. The combinations were visually compared across 

different images: dry, moist, wet plots; across sampling years; across different lighting 

conditions, which ranged from highly reflective water to shadowed canopies). We tallied the 

number of mixed image objects, and we closely examined the edge delineation, meaningfulness 

(over- or under-segmented), and representation of each class. The final parameters, used 

consistently across all the images, were Scale: 30, Color/Shape: 0.5/0.5, 

Smoothness/Compactness: 0.7/0.3. Color and shape were equally adept at creating logical image 

objects. A greater weight was assigned to smoothness since tundra vegetation is rarely blocky or 

square. This resulted in a total of 2,159,693 image objects generated across all of the images. The 

total number of image objects generated in each image is summarized in Table 2.3.  
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An over-segmented image object is defined as one feature divided into multiple image 

objects. This result was preferable to under-segmented image objects, because smaller image 

objects can be merged into larger image objects in subsequent steps if desired. Under-

segmentation results in image objects that contain multiple features in a single image-object, or 

in other words, are too large and mixed with multiple features. It becomes impossible to 

distinguish different classes from an under-segmentation (Kim et al., 2011). 

After segmentation we established a non-hierarchical, multi-class classification scheme, 

which contained ten classes: non-vegetation, bryophytes, deciduous shrubs, forbs, graminoids, 

lichens, litter, shadow, standing dead, and water. It was not possible to develop an automatic 

ruleset to refine and classify image objects due to the lack of existing, ancillary thematic data.  

Non-vegetation and water were manually identified and masked from the images. Insects, 

excrement, bare ground, fungi and permanent physical tags were labeled as non-vegetation. The 

machine learning classifiers require at least fifty samples to be trained properly. There were not 

enough samples to identify the non-vegetation classes accurately. In the rare case that an image 

object was unidentifiable from the image, it was also classified as non-vegetation.  

Vascular species (deciduous shrubs, forbs, graminoids) and non-vascular species 

(bryophytes, lichens) were grouped by broad growth form. Litter and standing dead are the result 

of dead plant material, but these two classes can be classified separately, since they differ in 

characteristics and structure. Standing dead is typically recognizable by reflective upright stalks, 

while litter is degraded to the point where it is not recognizable.    

Inflorescences may appear identical or vastly different in shape, color, and size as a result 

of their development within their phenological lifespan. Due to the low frequency and lack of 

pattern among the inflorescences, all inflorescences were identified and classified manually into 
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the corresponding class. The algorithms would not be able to learn and classify these few 

instances well.  

Areas obscured by shadow were not able to be accurately identified, therefore shadow 

was assigned its own class. In the rare event that a mixed image object is encountered in the 

labeling procedure, then the image object was classified based on the majority class (Congalton 

& Green, 2009). 

Feature Calculation and Extraction 

A combination of spectral, shape, and textural features, which leverage the information in 

an object-based approach, were selected for analysis (Table 2.4). Relational (i.e., proximity to 

neighbors), hierarchical, and class-related features were not used in the design and 

implementation of this study. 

Several band combinations were tested using the red, green, and blue bands. Spectral 

indices often minimize the effects of uneven illumination (Jensen, 2013). Some spectral indices 

can provide an estimation of vegetation cover, phenological shifts, or productivity, while others 

can distinguish soil or non-living elements from living vegetation species (Anderson et al., 2016; 

Beamish et al., 2016; Gitelson et al., 2002; Ide & Oguma, 2010; Richardson et al., 2007, 2009; 

Tucker, 1979). In our preliminary exploration, we found that ratio-based spectral indices (RSI = 

Band A / Band B) and reciprocal difference spectral indices (RDSI = (1 / Band A) – (1 / Band B) 

did not offer any new information. These redundancies were eliminated prior to classification.  

Texture features were calculated from a grey-level co-occurrence matrix (GLCM) 

(Haralick, 1979; Haralick et al., 1973). A GLCM tabulates how often different combinations of 

pixel gray levels appear or exist in an image or scene. Contrast features include homogeneity, 

contrast, and dissimilarity, while orderliness features include entropy and angular second 
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moment. Descriptive statistics of the GLCM (correlation, mean, standard deviation) were not 

included in this analysis, nor were any third-order texture measures calculated from the grey-

level difference vector (GLDV) due to the heavy computational load in eCognition Developer. 

Texture features were calculated from all bands in all directions (0°, 45°, 90°, 135°), and 

therefore show directional invariance. 

Machine Learning Classifiers 

There were five machine learning classifiers that were implemented in this study (Table 

2.5). All classifiers are non-parametric; therefore, no statistical assumptions were made about the 

distribution of the data. A brief description of each classifier is provided below. 

Random Forest (RF) is an ensemble tree-based classifier (Breiman, 2001). Trees are 

generated independently from each other. Trees are trained on in-the-bag samples, which are 

drawn randomly with replacement from the training data set (Breiman, 1996). Trees are 

validated on out-of-the-bag (OOB) samples, or hold out samples from the training data set, to 

assess model performance. The final tree is a result of the combination of the highest votes for 

the most accurate split thresholds and predictors. The resulting error estimate is generated from 

OOB samples. Any less than 500 trees in the forest may result in errors that have failed to 

stabilize, so 500 trees in the forest was maintained in this study (Belgiu & Drăgut, 2016; 

Lawrence et al., 2006). RF was tuned between the Gini and extratrees split rule. The number of 

predictors tested (mtry) ranged from 2 to 22 in even increments. Minimum node size remained at 

a value of 1. 

Gradient Boosted Modeling (GBM) is an ensemble tree-based classifier (Friedman, 2001, 

2002). Trees are created in series (sequentially) in a gradient boosted classifier rather than in 

parallel (concurrently) as they are in a random forest classifier. Boosting classifiers are 
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adaptable: as the trees are trained on the subsets from the training data set, the training subsets 

are purposefully edited to minimize the classification errors from earlier trees (Freund & 

Schapire, 1997; Schapire, 1990). The number of trees, tree complexity, learning rate, and 

minimum terminal node size can be adjusted in GBM. The number of trees ranged from 50 to 

300 at increments of 50. Tree complexity ranged from 1, 2, 3, 5, and 9. Shrinkage remained at a 

value of 0.1, and minimum terminal node size remained at 10. 

Classification and Regression Tree (CART) is one of the simplest tree-based classifiers 

and generally quickest to compute due to the inherently simple mathematics (Pal & Mather, 

2003; Quinlan, 1986). CART is not an ensemble tree-based classifier: data is split into classes 

based on defined thresholds. Pruning the tree, or removing splits, may lower the accuracy of the 

final model, but it generally helps with extrapolating the model onto an unknown (new) data set. 

In this study, the complexity parameter was tuned across ten random values determined 

automatically through the caret package in RStudio. 

Support Vector Machine (SVM) is a non-parametric machine learning classifier. This 

classifier uses a hyperplane boundary in multi-dimensional feature space to define samples into 

classes (Cortes & Vapnik, 1995; Huang et al., 2002; Mountrakis et al., 2011; Pal & Mather, 

2005). Training samples that are closest to the hyperplane are support vectors used to develop the 

model. Other samples are ignored. The hyperplane starts as a linear boundary. If the training 

samples cannot be separated using a linear boundary, then the feature space is transformed to a 

higher dimension until the classes are separable. The transformation is the kernel trick, and the 

radial basis function kernel, which is non-linear, is used in this study. Samples are penalized at a 

cost if they are located on the incorrect side of the boundary, which generally occurs in data sets 
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where classes cannot be distinguished clearly. Cost was tuned exponentially over values ranging 

from 2-2 to 27. Sigma was determined automatically using the sigest function. 

K-nearest neighbor (KNN) is a non-parametric, lazy learning classifier (Altman, 1992). 

KNN is frequently referred to as a lazy learning classifier, since the degree of membership is 

directly assessed for each unknown sample, but no model is trained (Everitt et al., 2006). Each 

unknown sample is assigned to the class with the nearest feature space based on the trends within 

the training data set. Low values for the number of neighbors, k, create complex decision 

boundaries between classes, while high values create general, less complex decision boundaries 

between classes. The greater the data set, the more computationally intensive this classifier tends 

to be. The parameter k was tuned over ten odd numbers ranging from 5 to 23 as determined 

automatically through the caret package in RStudio. 

Model Optimization, Evaluation, and Application 

Caret assembles a wide variety of classification and regression models into a standard 

framework using universal syntax for R (Kuhn, 2008). Auxiliary tasks such as data preparation, 

data splitting, variable selection, and model evaluation, are also integrated in this package. We 

relied on caret to train, validate, and test the classification models. 

A total of 15,000 image-objects were selected randomly and equally across all of the plot 

images, which was 0.7% of the total data set (Figure 2.5). The image-objects were labeled and 

divided into training, validation, and test data sets using a stratified random sampling scheme 

(Table 2.6). As a general rule for large data sets, a minimum of 10,000 samples must be sampled 

(Congalton, 1991). There were also at least 50 samples per class, but most classes generally had 

between 75 to 100 samples, which is optimal for larger data sets (Congalton, 1991). We 

determined this to be an adequately-sized data set on which to train the model. The imbalance in 
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the labeled data set likely reflects the general trend of the entire data set assuming the variability 

is appropriately captured within 15,000 records. 

Features may be highly correlated in eCognition, so these redundancies must be closely 

examined and eliminated during model development (Laliberte & Rango, 2011; Trimble 

Germany GmbH, 2019). Features above a 95% correlation threshold were removed from 

analysis, resulting in 22 features for analysis. Since the data set in this study is not high-

dimensional, as in the endless possibilities of most genomic studies, it is not critical to remove 

features through more rigorous testing (Chandrashekar & Sahin, 2014). 

Data were down sampled to adjust for class imbalance. Five repeats of 10-fold cross 

validation were applied to generate a stable estimates of model performance (Kuhn, 2008). A 

sampling grid was applied to most models to find the best hyperparameters.  

Machine learning classifiers were evaluated primarily by overall accuracy. A confusion 

matrix, also referred to as an error matrix or contingency table, examines the thematic accuracy 

of a classified image (Congalton et al., 1983; Foody, 2002). Thematic accuracy is a broad term, 

which describes how accurately the image is labeled. Overall accuracy (OA) describes the 

agreement between the reference and classified data sets. It is calculated from the diagonal 

values along a confusion matrix. An accuracy greater than 0.8 is a strong model, a value between 

0.4 to 0.8 is moderate, and a value less than 0.4 is poor (Congalton & Green, 2009). Cohen’s 

Kappa accounts for the possibility of agreement between the reference and classified data sets 

based on chance (i.e., a classifier’s tendency to vote yes or no), but it can also be misleading and 

irrelevant, so it is not discussed at depth in this study (Cohen, 1960; Congalton et al., 1983; 

Pontius & Millones, 2011). Individual class accuracy is analyzed by producer and user 

accuracies (Story & Congalton, 1986). Producer accuracy (PA) is relied on by the mapmaker to 
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describe the probability that a real-life object is classified correctly in the image. User accuracy 

(UA) is relied on by the map user to describe the probability that a classified object in an image 

matches the object in real-life. 

The computational run time and intricacy of the model development process were also 

metrics of model evaluation. Not only are these metrics determinant of the success of the 

classification model, but they also determine if the model can be communicated and interpreted 

by decision makers and the general public. The highest performing model was applied to the 

total data set to classify each vegetation plot. Relative vegetation cover was extracted according 

to each vegetation class at each plot. 

Comparing Estimates of Vegetation Cover 

Vegetation cover in the field was assessed using the point frame method (Harris et al., 

2021; May & Hollister, 2012; Molau & Mølgaard, 1996). A 0.75-m2 gridded frame was aligned 

to permanent physical markers in each vegetation plot. The frame was leveled and positioned 

above the tallest plant species in the plot. 100 nodes, or sampling points, were distributed equally 

every 7.5 cm on the gridded frame. A wooden rod was dropped at every node. Species type, 

height, and live or dead status were recorded for each encounter until the ground was reached. 

Plots were sampled once within the same 14-day time frame annually from mid-July through 

early August. 

Relative vegetation cover estimates were processed in Microsoft Access 2019 (Microsoft 

Corp.; Redmond, WA, United States). Plant species were grouped into seven broad growth 

forms, or vegetation classes: bryophytes, deciduous shrubs, forbs, graminoids, lichens, litter, and 

standing dead. Encounters of research equipment, permanent physical markers, and open water 

were removed from the data set prior to calculations of relative cover. Relative cover refers to 
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the total cover of each vegetation class divided by the total cover of all vegetation classes in a 

plot.  

All statistical analyses were executed in RStudio v. 1.4 (RStudio, PBC; Boston, 

Massachusetts). Each vegetation class was tested for normality (Anderson-Darling Test) and 

equal variance (Levene’s Test). Transformations were not helpful in alleviating issues of non-

normality and heteroscedasticity. Spearman-Rank correlation tests were applied to each 

vegetation class at each sampling year. Shadow was summarized from the classified images but 

not evaluated in a correlation test. 

Predicting Vegetation Abundance 

Vegetation cover was assessed using the point frame method, yielding count-based 

measurements of abundance. Count-based abundance data are often zero-inflated and do not 

conform to standard distributions. Negative covariances among taxonomic groups are expected 

since the relative abundances must sum to one. Therefore, a growing number of studies have 

advocated for the use of the Dirichlet-multinomial model for analysis of over-dispersed, count-

based abundance data (Clark et al., 2017; de Valpine & Harmon-Threatt, 2013). 

Multinomial logistic regression with the default logit link was applied to predict the point 

frame estimates of all vegetation classes (𝑦𝑡,𝑝) using the image-based estimates from the 

corresponding plots and time points (𝑂𝑏𝑖𝑎𝑡,𝑝) (Equation 1; Kruschke, 2014).  

Equation 1  

𝑦𝑡,𝑝 ~ 𝑀𝑢𝑙𝑡𝑖𝑛𝑜𝑚𝑖𝑎𝑙 (𝜆𝑡,𝑝 𝑁𝑡,𝑝) 

The propensity (𝜆𝑡,𝑝,𝑣) of each vegetation class (v) in each plot (p) at each time point (t) 

was predicted from a linear model using a plot-specific intercept (𝛼𝑝,𝑣), regression coefficient 

(𝛽𝑣), and predictor (𝑂𝑏𝑖𝑎𝑣,𝑡,𝑝) (Equation 2). The predictor variables were narrowed to a smaller 
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set. For each vegetation class, we used the corresponding image-based estimate in each plot at 

each time point as the predictor.  

Equation 2  

𝜆𝑡,𝑝,𝑣 =  𝛼𝑝,𝑣 + 𝛽𝑣 ∗ 𝑂𝑏𝑖𝑎𝑣,𝑡,𝑝 

Random effects of plot were also included in the model to account for the repeated 

measurements over time (Equation 3). Random effects of plot describe the stability of vegetation 

composition over time within the plot. Plot-specific random intercepts (𝛼𝑝,𝑣) were established 

using the grand mean intercept (𝛽0,𝑣) and the plot-specific variations for each vegetation class 

(𝜎𝑣).  

Equation 3  

𝛼𝑝,𝑣 ~ 𝑁𝑜𝑟𝑚𝑎𝑙 (𝛽0,𝑣 𝜎𝑣) 

The expected proportions in each vegetation class for a particular plot were provided by 

the softmax function (Equation 4). This was the exponentiated propensity to be in a given 

vegetation class relative to the propensity to be in all possible classes. In other words, this 

function normalized all expected proportions in each vegetation class to sum to a maximum of 

one. 

Equation 4 

𝜑𝑡,𝑝,𝑣 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝜆𝑡,𝑝,𝑣) =
exp (𝜆𝑡,𝑝,𝑣)

∑ exp (𝜆𝑡,𝑝,𝑣)𝑣∈𝑐
 

 

Therefore, the expected number of counts in each vegetation class are determined by 

Equation 1, which relies on Equations 2, 3, and 4. The expected number of counts in each 
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vegetation class are the result of the expected proportions in each class (𝜑𝑡,𝑝,𝑣) multiplied by the 

total number of counts in that plot (𝑁𝑡,𝑝) recorded using the point frame.  

Although the models were fit directly to the point frame counts, we used the expected by 

observed proportions of each vegetation group (𝜑𝑡,𝑝,𝑣 ∗ 𝑁𝑡,𝑝) to evaluate model performance, as 

the null expectation is that the total number of counts in any given vegetation class will be higher 

when more points are sampled. 

We calculated the mean absolute error (MAE) and bias of each vegetation class to 

evaluate model performance (Willmott & Matsuura, 2005). MAE was calculated as the average 

absolute difference between the predicted proportion of vegetation in each class and the observed 

proportion in each class (mean(absolute(predicted – observed))). Bias was calculated as the mean 

difference between the two proportions in each class ((mean(predicted – observed))). Bias 

describes whether a predicted class was over- or under-estimated by the model since bias 

accounts for directionality.  

All models were fitted using the brms package with non-informative priors, specifying 

‘NA’ for the reference category. In some cases, lack of a reference category can lead to non-

identifiable models. Here, models showed satisfactory convergence using the narrowed set of 

predictor variables (R̂ < 1.1). The narrowed set of predictor variables were relied upon in this 

study for the sake of simplicity and computational load.  

We evaluated model performance using both in-sample and out-of-sample methods. For 

in-sample performance the full data set was used for both training and evaluation. For out-of-

sample performance we used an end-sample holdout method to partition the data set temporally 

or spatially (Simonis et al., 2021).  
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We tested if the image-based estimates improved our ability to quantify the vegetation 

abundance from future years by partitioning the data temporally. We refit the model using data 

from 2012 to 2015. Then, we predicted the relative abundance of each vegetation class in all 

plots from 2018 to 2021. To evaluate the relative information gained from plot photography, we 

modeled the random effects of plot and fixed effects covariates as predictors.  

Specifically, we predicted the relative abundance of each vegetation class (v) in each plot 

(p) at each time point (t) in the temporal comparison using three modifications to Equation 2. 

First, we calculated conditional predictions which included the random effects of plot and fixed 

effects covariates (Equation 2). Secondly, we calculated marginal predictions, eliminating 

random effects of plot, and only included the image-based information from the fixed effects 

covariates (Equation 5). 

Equation 5 

𝜆𝑡,𝑝,𝑣 =  𝛽0,𝑣 + 𝛽𝑣 ∗ 𝑂𝑏𝑖𝑎𝑣,𝑡,𝑝 

 

Finally, we refit a model that only included the random effects of plot, predicting relative 

abundance of each vegetation class in each plot (Equation 6).  

Equation 6 

𝜆𝑡,𝑝,𝑣 =  𝛼𝑝,𝑣 

We also tested if image-based estimates improved our ability to quantify vegetation 

abundance from unseen vegetation plots by partitioning the data spatially. We refit the model 

using the data from twenty vegetation plots, or two-thirds of the data set. Then, we predicted the 

relative abundance of the vegetation classes in the remaining ten vegetation plots, or one-third of 

the data set. In this comparison, we included random effects in the model to account for the 
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repeated sampling. As there was no overlap between the vegetation plots used to fit and evaluate 

the model, the conditional predictions were essentially the same as the marginal predictions. 

Therefore, marginal predictions were not evaluated. 

 
Results 

Segmentation 

In general, a greater number of objects were generated from the images of moist 

vegetation plots (Table 2.3). Plots that were inundated with standing water tended to produce 

fewer objects. The segmentation parameters generally captured the crenulated structure of 

lichens. Forbs and graminoids were often over-segmented. Deciduous shrubs, bryophytes, and 

standing water often existed in large, contiguous patches in the plot images, but these patches 

were also over-segmented due to the low scale parameter.  

Evaluation of Machine Learning Classifiers 

The random forest model performed the best with an overall accuracy of 60.5% (Table 

2.7). The gradient boosted model performed slightly worse with an overall accuracy of 59.8%. 

The overall accuracies of the random forest and gradient boosted models were fairly even in the 

results from the training, validation, and test sets. The computational time was greatest for the 

gradient boosted model. The k-nearest neighbor model was the worst performing model with an 

overall accuracy of 46.6%. 

Intensity was ranked as the feature with the highest relative importance (Table 2.8). The 

top five most important features were spectral or layer values. Texture features were ranked in 

the middle, while most of the geometric (shape, extent) predictors were ranked at the bottom. 

In general, most classes demonstrated individual class accuracy above 50% using the 

random forest model (Table 2.9). It is important that bryophytes, graminoids, and litter exhibited 
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high user accuracies, as these three growth forms are especially abundant in the training data set 

(Table 2.6). Graminoids and litter exhibited high user accuracies, and bryophytes exhibited a 

moderate user accuracy. Deciduous shrubs and lichens exhibited very low user accuracies, in 

addition to low producer accuracies. Deciduous shrubs had the lowest producer (40.0%) and user 

accuracies (15.6%). Deciduous shrubs were most frequently confused with bryophytes (22.9% of 

the time), graminoids (33.5% of the time), and litter (21.6% of the time) in the classification. 

There was less confusion between deciduous shrubs and forbs than anticipated (3.2% of the 

time). Lichens also had an unusually low user accuracy (20.4%); this class was most frequently 

confused with litter (39.8% of the time) and standing dead (23.1% of the time) in the 

classification. 

Shadow was rarely confused with the other classes. Shadow was most frequently 

confused with bryophytes (17.7% of the time) and litter (11.3% of the time). Shadows vary with 

light intensity and vegetation structure and were present to some degree in all images. Shadow 

occupied between 0.36% and 41.8% of a plot image (mean = 11.5%). The least amount of 

shadow overall (7.3% total) occurred in the images from 2013, while images from 2018 had the 

most shadow (16.7% total). 

Comparing Estimates of Vegetation Cover 

Deciduous shrubs and lichens were distributed sparsely among one-third to half of the 

vegetation plots using the point frame method of vegetation sampling (Table 2.10). Bryophytes, 

forbs, graminoids, litter, and standing dead were generally present in most, if not all, vegetation 

plots using the point frame method. All classes were detected across all plots and sampling years 

using the plot photography method, with the exception of forbs in years 2014 and 2018. 
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In general, there were positive correlations across classes and years (Table 2.11). 

Graminoids were associated positively across all sampling years. Graminoids also showed the 

highest significant positive association overall. Litter showed negative or no association, except 

for a low positive association in 2012. Standing dead also showed a few instances of negative 

association in 2013 and 2021. There was one instance of negative association in bryophyte cover 

in 2013. 

Over all plots and years, there was a significant positive correlation between relative 

cover estimates from the point frame and plot photography methods (Figure 2.6). Litter and 

standing dead were the exceptions. There was no relationship detected for standing dead. Lower 

amounts of litter detected from the point frame were associated with higher amounts of litter 

detected using plot photography. This relationship often fell far from the 1:1 reference line. Plot 

photography generally underestimated the relative cover of graminoids. 

Predicting Vegetation Abundance 

In-sample performance of the multinomial regression model eliminated the bias and 

reduced MAE across all classes, thereby improving estimates of relative abundance (Table 2.12). 

The MAE of deciduous shrubs, graminoids, and litter improved the most. After accounting for 

the consistency in vegetation composition over time, that is, the random effects of plot, in the 

model, greater quantities of deciduous shrubs, forbs, and graminoids detected using the plot 

photography method were associated with greater quantities of those classes using the point 

frame method (Figure 2.7). This was marginally true for bryophytes, although the credible 

interval overlapped zero. Greater quantities of lichen, litter, and standing dead detected using the 

plot photography method were predictive of lower amounts of those growth forms in the 

corresponding point frame data. 
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Out-of-sample performance of the regression models over time demonstrated that image-

based estimates, or fixed effects covariates, helped lower the MAE and bias in most cases, except 

for lichen and standing dead (Table 2.13). Lichen abundance exhibited little to no change, while 

standing dead abundance exhibited higher MAE and bias in the image-based model. However, 

some of the largest improvements in our ability to estimate abundance from this model came 

from random effects of plot, especially in deciduous shrubs and graminoids. In general, the 

optimal model resulted from the conditional predictions, which included the fixed effects 

covariates and random effects of plot. Although there was not a huge difference in predictive 

performance between the three models, all models notably improved the estimates of vegetation 

abundance over direct substitution. 

Out-of-sample performance of the regression models over space demonstrated that the 

MAE and bias was lowered across all vegetation classes, except for lichen abundance (Table 

2.14). Lichen abundance exhibited a lower MAE and bias using direct substitution. Bryophyte 

and forb abundance also exhibited little to no change in MAE and bias. Although there was not a 

large difference in predictive performance between the two models, the conditional predictions 

improved the estimates of vegetation abundance over direct substitution. 

 
Discussion 

Segmentation 

Over-segmentation was a likely outcome for most vegetation classes in the images, since 

tundra vegetation is heterogeneous at a fine-scale, and it varies in structure, quantity, and color. 

It was impossible to designate segmentation parameters that perfectly segmented each feature in 

an image into objects. Although a larger scale parameter outlined the contiguous patches of 

deciduous shrubs, bryophytes, and standing water with fewer instances of over-segmentation, it 
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also failed to capture the outline of the lichens. A larger scale parameter generally resulted in 

more under-segmented objects, as the boundaries between the deciduous shrubs and forbs 

blurred.  

Although it is usually possible to remedy over-segmentation by merging smaller objects 

into larger objects in subsequent steps, there was no clear rule to institute regarding color, shape, 

or texture (Laliberte et al., 2007). The three-band images in this study are limited by their 

available spectral information, so color, or spectral information, cannot be relied upon in later 

steps to merge objects and facilitate automatic classification (Lang, 2008). There is likely never a 

perfect setting for segmentation, so it is better to over-segment the features in an image and 

merge them in subsequent steps (Witharana & Civco, 2014). 

In order to make GEOBIA more reproducible and robust, recent studies have suggested 

that the accuracy of segmentation is assessed through a formal accuracy assessment (Ma et al., 

2015; Ye et al., 2018). Formal accuracy assessments often require manual delineation of an 

independent set of reference polygons. The reference polygons are compared to the polygons 

produced through the segmentation algorithms. Not only can the accuracy assessment vary 

according to the user, but it is often time-consuming, especially in images with great diversity or 

heterogeneity. Although the accuracy of the segmentation is an important consideration, a formal 

accuracy assessment remains an area of active, controversial research as not all researchers argue 

that it is necessary (Blaschke et al., 2014; Radoux & Bogaert, 2017). This assessment can be 

considered for future studies. 

Importance Values 

Importance values should be interpreted with care, since highly correlated, continuous 

predictors may be given higher values erroneously (Strohbl et al., 2007). eCognition produces 



49 
 

features that can be highly correlated (Trimble Germany GmbH, 2019). Therefore, our analysis 

discusses feature importance in broad terms, and the importance values were not closely 

analyzed in this study (Maxwell et al., 2018). 

In general, spectral features were the most influential predictors in the random forest 

classification. Spectral features measure the fundamental properties of the objects, while texture 

measures the spatial relationships of pixels within an object. These features are more likely to be 

independent and complement each other (Kim et al., 2011; Laliberte & Rango, 2008). Shape 

features had the least impact on the random forest classification, which validates the theory that 

shape features may become more critical at greater scales (Ma et al., 2015). 

Hue, saturation, and intensity (value), or HSV, has been shown to improve the 

segmentation or classification of digital images (Chen et al., 2010; Laliberte et al., 2007; 

Laliberte & Rango, 2011). HSV results from a transformation of the red, green, blue color space, 

which are highly correlated bands and tend to provide redundant information (Jensen, 2005). In 

our preliminary analysis, HSV did not improve the segmentation of the plot photographs. 

However, hue and intensity were both among the top five predictors of the classification. 

Intensity showed significant, distinctive contrast between vegetation classes at a cursory glance, 

especially in comparison to other spectral, textural, or geometric features. In general, shadow and 

standing dead were on opposite ends of the spectrum for intensity values.  

Green ratio (rG), green-red vegetation index (GRVI), and greenness excess index (GEI) 

were also among the top five predictors. These indices measure similar information regarding the 

phenology and vegetation composition from the digital images. Green-Red Vegetation Index 

(GRVI) has performed comparably to the Normalized Difference Vegetation Index (NDVI) at 

the plot level; thus, GRVI may often be used interchangeably with NDVI, usually at the expense 
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of lower overall accuracy (Anderson et al., 2016; Marcial-Pablo et al., 2019; Motohka et al., 

2010). It is clear that the green ratio (rG), green-red vegetation index (GRVI), and greenness 

excess index (GEI) offer important, discriminatory information on the vegetation classes based 

on the high importance values. Perhaps, these RGB-based indices may be used as proxies to 

NIR-based indices when standard, low-cost cameras are used to capture photographic 

information from vegetation plots. 

Shadow 

In general, the images with the greatest amounts of shadow also had the greatest amounts 

of inundation. Inundated plots exhibited a few, dominant species, and some of which were not 

visible in the image depending on the level of inundation in the plot. Moist vegetation plots tend 

to exhibit greater species diversity than inundated vegetation plots (van der Welle et al., 2003). 

Since any visible water was masked and removed prior to classification, the relative cover 

estimates of shadow tended to be inflated in inundated plots. For example, plot H3 recorded the 

lowest overall measurement for shadow cover in 2014 (0.36%). Plot H3 also recorded two of the 

highest measurements for overall shadow cover in 2018 (41.2%) and 2019 (41.8%), which were 

also years with a large amount of inundation.  

Shadow has been shown to confuse image analysis and lower classification accuracy 

(Laliberte et al., 2007). In this study, very little class confusion occurred with shadow overall, 

except for some overlap with bryophyte and litter cover. Bryophytes vary in color and texture, 

especially in response to moisture level (May et al., 2018). Inundated bryophytes tend to darken 

in color, creating a more complicated task for the machine learning classifier to distinguish an 

inundated bryophyte from shadow. Litter appeared not to have distinctive color, shape, or size, 

since it can vary depending on the timing of the degradation and the vegetation species. Litter 
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tends to be darker in color due to degradation, so the minimal class confusion with shadow was 

also justified. It may be possible to improve the distinction between shadow, bryophytes, and 

litter with additional training samples. 

We expected to encounter shadow in the plot photographs as a result of the constraints of 

plot photography. The observer can change their viewpoint easily and illuminate the plot if 

shadow is present during the point frame method of sampling. The reverse is not true of plot 

photography, where shadow is a component of every image to varying degrees. Even in ideal, 

overcast sampling conditions, shadows remained visible in the middle and lower canopies in the 

digital images. It is difficult to achieve standardized lighting conditions in the Arctic, where 

fieldwork is limited to a short growing season and low sun angles (Stow et al., 2004). Blocking 

direct sunlight in an attempt to standardize lighting conditions may be possible with additional 

equipment or a second field technician, but shadow cannot be eliminated from the images, only 

minimized (Chen et al., 2010; King et al., 2020; Laliberte et al., 2007; Luscier et al., 2006).  

Comparing and Predicting Estimates of Vegetation Cover and Abundance 

If the point frame and plot photography sampling methods recorded similar species 

composition within the plots, then there should not be a large difference between the relative 

cover estimates between the data sets. A difference might indicate that the plot photography 

method is over- or under-estimating the relative cover of one or more classes due to the 

constraints of the sampling methodology or parameters in the image analysis. A difference might 

also indicate that a larger labeled data set is necessary to train, validate, and test the random 

forest classifier, since the variability of the entire data set is not captured in data set. The 

difference could also be a result of the error inherent in the random forest classifier, which has an 



52 
 

overall accuracy of 60.5%. Some class confusion is inevitable, which may result in under- or 

over-estimates of relative cover. 

There is a large discrepancy in the relative cover estimates of graminoids and standing 

dead from the point frame and plot photography. Graminoids and standing dead tend to be 

upright, tall, and narrow in structure, though they differ in color. Plot photography appears to 

under-estimate graminoid and standing dead cover since the topmost view of the canopy is 

visible only, which limits the available area that can be analyzed in the photograph. 

Deciduous shrubs and lichens had the greatest individual classification error (Table 2.8). 

Perhaps more instances of lichens were needed to train the model, given the wide variety of 

color, shape, and species at Utqiaġvik. Likewise, deciduous shrubs were often under-segmented 

and confused with vegetation classes that exhibited similar size and shape. There was little 

overlap between deciduous shrubs and forbs, suggesting that spectral similarities between the 

two vegetation classes were not strong enough to confuse the two more often. It is difficult to 

rely on the classification of deciduous shrubs and lichens, since the producer and user accuracies 

were so low. 

Standing dead is a version of dead plant material, but this class has distinctive 

characteristics which separate it from litter. Standing dead is tall, narrow and reflective. Litter 

can be difficult to classify automatically, given that this class encompasses all dead plant 

material that has fallen to the bottom of the canopy. Litter may appear round, brown and curled, 

as the leaves of the dominant forb, Petasites frigidus, do after senescence, or gray and formless 

as plant material degrades over time. Not only is it difficult to establish a repeatable 

classification pattern for the machine learning classifiers, but the boundaries of this class may 

also be difficult to define during the segmentation procedure. Class confusion occurred between 
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litter and all other vegetation classes, but the classification of litter ultimately performed well 

with the highest overall user accuracy (81.5%). Perhaps the results of the classification could be 

improved had the focus been on living vegetation only.  

Plot photography is a reliable method for recognizing and classifying graminoids, which 

are the most abundant vegetation class at Utqiaġvik according to the cover estimates from the 

point frame. Graminoids exhibited an acceptably high user accuracy in the classification, and 

point frame and image-based estimates of graminoid abundance were also strongly correlated 

across all sampling years; therefore, the image-based estimates of graminoid cover are reliable. If 

graminoids are the primary focus of the research study, then this technique can be confidently, 

and widely, adopted in the Arctic.  

However, this technique falls short in estimating the cover and abundance of deciduous 

shrubs and lichens. Deciduous shrubs and lichens exhibited very low user accuracies in the 

classification, rendering these image-based estimates of cover as unreliable. If deciduous shrubs 

and lichens are the focus of the research study, then researchers should not rely on this technique. 

Although the practicality of plot photography for Arctic researchers is limited, it is not rejected. 

The object-based approach failed to recognize and classify deciduous shrubs and lichens at a 

satisfactory level of accuracy in this study, but plot photographs can be analyzed retroactively. 

Image analysis and deep learning approaches may improve over time and allow for accurate 

classification of these two vegetation classes, provided that the images are available for analysis.  

Given the amount of class confusion in the random forest classifier, false positives and 

negatives exist in the estimates of relative cover for each vegetation class. All classes, except for 

forbs, were detected across all sampling years using plot photography (Table 2.10). We assume 

that deciduous shrubs and lichens were over-estimated in the plot photographs, given that these 
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classes were only present in half or less of the vegetation plots annually using the point frame 

method of sampling. This trend is also visible in the direct substitution of the regression model 

(Figure 2.6). It appears that the point frame method of sampling captures the vegetation 

composition of each plot more accurately than the plot photography method of sampling. 

All regression models, including the temporal and spatial comparisons, performed 

optimally in comparison to direct substitution. The substantial decreases in MAE and bias are a 

result of incorporating two additional sources of information: the fixed effects covariates, which 

are developed from the image-based estimates of abundance, and random effects of plot. The 

image-based estimates often improved the MAE and bias minimally, whereas most of the 

improvements originated from the plot identity, or plot-specific information.  

Plot photography is a quicker field methodology than point frame sampling. In this study 

we tested our approach using the data from thirty vegetation plots in the ARCSS grid. This 

subset of thirty vegetation plots is sampled once annually using the point frame method and up to 

six times seasonally using the plot photography method. In contrast, the ninety-eight vegetation 

plots in the ARCSS grid are sampled once every five years using the point frame method, since 

this requires a huge investment in terms of field crew, time, energy, and logistics. The 

performance of the holdout space model on the thirty vegetation plots strongly suggests that plot 

photography could be extended to the remaining sixty-five vegetation plots with accurate results, 

since this sampling method accurately observes compositional shifts in vegetation abundance.  

In other words, when point frame sampling is applied to a subset of the vegetation plots 

in the ARCSS grid, plot photography can be applied to the remaining the vegetation plots in the 

ARCSS grid to provide information on the spatial composition of all the vegetation plots when 

constrained by time and resources. More broadly, if the model were trained on a subset of plots 
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and performed well, larger areas could be surveyed using plot photographs and analyzed to 

describe spatial gradients in vegetation composition. Greater spatial coverage could be achieved 

using plot photography than the point frame method. 

While unbiased estimates of relative cover were generated using plot photography, the 

estimates were not precise on a per-plot level and lacked sufficient accuracy to capture more 

subtle shifts in vegetation over time within individual plots. Plot photography can be relied upon 

to accurately measure the plot average as long as the MAE and bias is low in the regression 

models. Improvements to the object-based approach may improve the accuracy of the image-

based estimates, thereby improving how well the estimates predict relative abundance on a per-

plot level. Thus, plot photography is useful, but an imperfect, method of sampling. It may add 

more information spatially, where there is large compositional turnover, than temporally, where 

the abundance changes are more subtle. However, estimates of relative cover from the plot 

photography method are constrained by historical estimates of vegetation abundance from the 

point frame method. 

Sources of Error 

Uncertainties accumulated throughout the methodology, resulting in positional, 

interpretation, and mis-classification errors. Positional errors resulted from the error inherent in 

the DGPS coordinates (± 1 to 5 cm) and the georeferencing procedure (± 0.2 to 11.5 cm). 

Segmentation parameters directly impact the results of the classification (Drǎguţ et al., 2014; 

Kim et al., 2011; Smith, 2010). In this study, the user-dependent segmentation parameters 

affected the shape and size of objects, therefore affecting the quality and number of objects 

generated. The manual labeling procedure was executed by an expert with substantial field 

experience and skill in Arctic plant identification. Therefore, interpretation errors were inevitable 



56 
 

but consistent across the data set. Interpretation errors were impossible to quantify after the 

procedure, and these may weaken the quality of the data set. There were inevitable mis-

classification errors since the overall accuracy of the random forest classification was 60.5%.  

We recommend that positional, interpretation, and mis-classification errors for the plot 

photography method are dealt with in the following ways. Positional errors can be minimized, 

but not eliminated. If the RMSE exceeds a pre-defined threshold during the georeferencing 

procedure, then the image should be substituted for a nearby sampling date if available. 

Interpretation errors could be flagged during the labeling procedure if multiple experts labeled 

then compared their responses (King et al., 2020). Accurate segmentation provides a better 

chance of an accurate classification. The segmentation parameters can be optimized using a 

segmentation accuracy assessment (Ma et al., 2015; Ye et al., 2018). Perhaps, a more rigorous 

series of rules can be included to refine the primitive image objects in the early steps of the 

object-based approach. Image analysis was limited by both the available data set and tools of 

analysis, and we expect that it will be modified and improved over time. 

The errors in the point frame sampling method were fewer than the plot photography 

method but still present in the form of positional, interpretation, and mis-classification errors. 

Positional error was minimal due to the leveling and alignment of the point frame to permanent 

tags in the vegetation plot. Point frame sampling can be intensive and tiring, so interpretation 

error was possible due to the exhaustion of the field technician (Bennett et al., 2000; Vittoz & 

Guisan, 2007). Tall vegetation can shift with the wind, so the frequency of contact hits may be 

skewed during windier conditions (Gorrod & Keith, 2009). A mis-classification can result when 

the field technician records incorrect information about the vegetation composition of the plot. 

Even so, these errors are generally minimal and usually rectified in post-processing of the data. 
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There is strong evidence that vegetation composition, cover, and abundance at the plot level is 

monitored accurately using this method of sampling (Mamet et al., 2016).   

The comparison between the relative cover estimates from the point frame and plot 

photography method of sampling was not direct. Each biomass encounter, or contact, was 

recorded from the upper, middle, and lower levels of the plant canopy using the point frame 

sampling method. Vegetation cover was assumed for each cell on the sampling grid based on the 

number of contact hits within each cell. In contrast, the plot photographs in this study only 

recorded the topmost visible layer. Therefore, the point density from the point frame sampling 

method may not reflect the relative cover that was obtained through image analysis (Chen et al., 

2010). Every visible object was quantified in image analysis, because this method was not 

constrained by a grid with 100 contact points. This introduced a degree of separation between the 

comparisons, because the corresponding spatial resolution and level of precision was different.  

Change in relative cover must be interpreted carefully for both sampling methods (Chen 

et al., 2010; Michel et al., 2010). A plant can be hidden beneath the topmost visible layer, 

rendering it invisible to the camera. Additionally, a plant can grow at a different height, angle, or 

location every year. Therefore, rarer vegetation classes, like deciduous shrubs, may be detected 

using the point frame method during some years but not all (Table 2.10). The differences in 

sampling techniques between the point frame and plot photography methods may explain the 

weaker correlations between the relative cover estimates of some of the vegetation classes (Table 

2.11). 

Furthermore, the removal of standing water from the plot images might explain the 

weaker correlations in bryophytes, litter, or standing dead. The presence of bryophytes can be 

detected in inundated plots using the point frame. However, the reverse is not true: standing 
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water can obscure bryophyte cover in plot images. In this study, all standing water was removed 

from the images to maintain an objective, rule-based protocol, even if vegetation was visible 

underneath the surface of the water. The relative cover estimates of bryophytes, litter, or standing 

dead might suffer from greater mismatch in inundated plots, which may also help explain the 

weak or negative correlations for some sampling years. 

Image Processing Automation 

Automatic identification and removal of water from the plot images is preferred to 

manual digitization and removal. In images with overcast lighting conditions, water was 

identified and removed more easily than in images with direct or scattered sunlight. In images 

with direct or scattered sunlight, a greater number of small objects were created to outline the 

reflections from direct sunlight, therefore water was more time-consuming to remove. In general, 

manual removal of water from one image required at least forty minutes to complete.  

The near-infrared (NIR) band would improve the efficiency of our semi-automatic image 

processing routine. We could calculate Normalized Difference Water Index (NDWI), a water-

specific index, which has been used to identify and remove standing water from remotely sensed 

images (McFeeters, 1996; Zhou et al., 2017). The NIR band would also permit us to calculate 

Normalized Difference Vegetation Index (NDVI), which can assist in distinguishing types of 

vegetation cover and is a widely used metric to monitor vegetation dynamics across the Arctic 

(Epstein et al., 2013; Pettorelli, 2013). The band combinations that we can use are limited to the 

visible electromagnetic spectrum and contain a finite amount of information. While we can 

maintain the analysis of historic photographs with standard red, green, and blue bands, we can 

also benefit from technological improvements in our equipment, which might allow us to access 

more information across the electromagnetic spectrum, thereby improving our classification. 
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We encountered some limitations with the eCognition software, so our approach to image 

analysis was not fully contained within it. eCognition is a black box. It was not possible to 

understand the internal steps of the rule set since the code is proprietary with few resources 

available to explain it. The classification models also lacked proper transparency to validate the 

underlying statistics. There was no functionality to allow for the random selection of objects in 

eCognition, especially at a scale that encompasses all of the images in this study. We also found 

that the processing time to export the feature list for each image was long and computationally 

intensive. We calculated the spectral indices outside of eCognition to reduce the processing time 

for each image. The limitations of eCognition were remedied by RStudio, thus the workflow 

transitions between the two platforms frequently (Figure 2.3). 

Moving forward, our aim is to increase the repeatability, robustness, and accuracy of the 

image analysis in this study. If possible, we seek to automate the process by lowering the number 

of platforms and transferring our approach to RStudio. It is critical that this process meets 

expectations from technical, scientific, and practical perspectives. Workflows and 

conceptualizations must be shared to make this approach transferable and more robust, and that 

is still lacking amongst the remote sensing community (Arvor et al., 2013; Witharana et al., 

2021). 

Recommendations for Future Studies 

A ranking system should be established for the digital images. The seasonal timing of the 

photography can be inconsistent. Plot images were acquired on a more frequent basis during 

some sampling years, but not all. In order to provide evidence of why some digital images were 

analyzed or substituted, each image should be ranked based on quality (resolution, camera angle, 

plot within view, lighting conditions, blur), quantity (missing images), and proximity to the point 
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frame sampling date. The images in this study were examined and selected based on the number 

of available images near the peak season. The quality, quantity, and proximity were considered, 

but the images were not ranked prior to digital analysis. We also recommend that if the RMSE 

exceeds a pre-defined threshold in the georeferencing procedure, then the image should be 

replaced if another is available.  

In our preliminary analysis, we applied a color balancing tool in ArcGIS Desktop to 

normalize spectral variations between the images, given that the lighting conditions were not the 

same between sampling years. This tool is error-prone and depreciated, and spatial analysts have 

migrated towards using ArcGIS Pro since the platform release (Menon, 2014). Our preliminary 

results were permanent and showed minimal improvement, even on plots exhibiting large 

spectral variation due to the harshness of direct sunlight. We are unaware of a tool to normalize 

spectral variations across plot-level images in ArcGIS Pro. Perhaps, our results would improve if 

normalization or correction were applied across images, allowing for a more accurate 

classification and comparison across time.  

A larger labeled data set might improve the results of this study. Recent studies suggested 

that 1,000 samples per class is optimal for training the neural network classification of large data 

sets (Maxwell et al., 2018; Ramezan et al., 2021). This new guideline would require a data set of 

at least 8,000 objects to classify the eight classes of interest in this study. Given the known 

imbalance in the data set in this study, a larger data set is necessary. An additional 5,000 records 

added to the 15,000 labeled records could be added to potentially meet the suggestion of 1,000 

samples per class. A larger data set might capture more spatial variability, in addition to allowing 

for rigorous feature selection and feature validation during model development (Maxwell et al., 

2018; Ramezan et al., 2021).  
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Directionality in texture features is not widely adopted in object-based image analysis. In 

this study, texture features were calculated from all bands in all directions (0°, 45°, 90°, 135°), 

and therefore show directional invariance, since this is the average of four directions. Texture 

can add information where spectral layers may offer limited information, such as differentiating 

between visibly distinct vegetation classes (water, vegetation, and soil) in high resolution images 

(Johansen et al., 2007; Kim et al., 2011). Herbaceous vegetation in wetlands may not benefit 

from texture at a coarser resolution (Dronova et al., 2012, 2015; Nie & Li, 2011). Yet, most 

published studies rely on directional invariance in texture, since there is a high computational 

cost associated with texture calculation (Benz et al., 2004). A specific direction (0°, 45°, 90°, 

135°) might be a more informative in identifying the texture of vegetation classes, resulting in a 

more accurate classification.  

Additional machine learning classifiers may be investigated, perhaps leading to a 

classification model with a higher overall accuracy. Artificial neural networks could be explored. 

Neural networks require large, uncorrelated data sets and an in-depth understanding of the 

mechanism underpinning the classifier to obtain concrete, reliable results (Maxwell et al., 2018; 

Olden et al., 2008; Rawat & Wang, 2017). Neural networks can be easily over- or under-trained, 

resulting in spurious, noisy, and non-reproducible results (Olden et al., 2008; Rawat & Wang, 

2017). Although we applied other classifiers to this data set in our preliminary analysis, the 

models either produced poor results or failed, since they did not meet the base assumptions of a 

gaussian distribution, or possessed parametric training data, binary classes, categorical 

predictors, or overwhelming computational demands (Kuhn, 2008). Those models were: 

Bayesian, boosting, discriminant, prototyping, and support vector machines (with different 
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kernels). Ensemble-based classification models, or a combination of machine learning classifiers, 

may also lead to more powerful classification model, but these were not tested in this study. 

 
Conclusion 

An object-based approach was applied to high resolution, plot photographs with three 

spectral bands (red, green, blue) to estimate the relative cover of eight vegetation classes. The 

random forest classifier performed better than the other machine learning classifiers (gradient 

boosted model, classification and regression tree, support vector machine, k-nearest neighbor) 

with an overall accuracy of 60.5%. Although the random forest classifier required more 

processing time, the overall accuracy was substantially higher than most of the other classifiers. 

The gradient boosted classifier performed similarly, but at the expense of a greater computational 

load and processing time, which made this classifier less desirable for future use. Random forest 

is the optimal machine learning classifier for the classification of near surface, high resolution 

digital images of Arctic vegetation. 

The object-based approach accurately classified some vegetation classes, but not all. 

Bryophytes, forbs, graminoids, litter, shadow, and standing dead were classified accurately using 

the random forest classifier. Deciduous shrubs and lichens were not classified accurately using 

the random forest classifier. Perhaps, a larger training data set or improvements to the shape or 

size of objects might improve the individual class accuracies of the problematic vegetation 

classes, thereby improving the overall accuracy of the classification. We recommend including a 

comprehensive accuracy assessment for segmentation parameters in future studies (Ma et al., 

2015; Ye et al., 2018).  

RGB-based spectral indices and layer values were the most influential in the 

classification. Geometric and textural features were less influential in the random forest 
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classification; that is, these features complemented existing spectral information to a limited 

degree. Our study reinforces that valuable information can be gained through standard imagery, 

which only consists of red, green, and blue spectral bands. That said, improvements to our digital 

cameras could improve our semi-automatic image analysis routine and classification results in 

the future if we could access more of the electromagnetic spectrum, notably the NIR band.  

Spearman-Rank correlations revealed that the relative cover estimates of graminoids were 

closely linked between the point frame and plot photography methods of sampling through all 

sampling years. Litter and standing dead or more generally, dead plant material, were more 

problematic. Litter and standing dead often showed negative associations between the relative 

cover estimates from the point frame and plot photography methods of sampling. Most likely, 

this can be attributed to the limitations of plot photography. Litter varies in appearance; 

therefore, the classifiers may have more difficulty in separating this class from the other 

vegetation classes due to the lack of spectral, geometric, or textural pattern. Standing dead is 

generally upright and narrow, therefore there is less surface area to analyze from a two-

dimensional digital image. Other classes, which are wider and can be captured in an image more 

easily from a vertical viewpoint, are likely to be analyzed more accurately. 

After our investigation into the multinomial regression models, we discovered that the 

estimates of relative cover from plot photographs were not precise on a per-plot level. The plot 

average was accurate, provided that the bias and MAE were also low in the models. The object-

based approach to analyzing the plot photographs is useful, but it requires improvement before 

the estimates of relative cover on a per-plot basis can be trusted for a finer scale analysis. Plot 

photography is a useful, but imperfect, method of sampling. It may add more information 
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spatially, where there is large compositional turnover, than temporally, where the abundance 

changes are more subtle.  

A photographic record can be revisited and re-analyzed in the future, and it is versatile, 

quick, and cost-effective. An object-based approach to image analysis provides reliable, although 

limited, information from fine-scale digital images of tundra vegetation. Information from near-

surface digital photographs can complement existing field observations. We recommend using 

our near-surface plot photographs to advance our understanding of the link between ground-

based and satellite-based observations without allocating resources towards traditional, intensive 

field surveys across the Arctic tundra. Both techniques are expected to maximize time, funding, 

and technology in order to monitor terrestrial change in the Arctic. 
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Table 2.1. Vegetation sampling dates using the point frame and plot photography methods (Jul = 
July; Aug = August). Camera specifications, including model and pixel resolution, are 
summarized. Photographs were substituted on occasion as noted (No.). 

 
  

Year Point Frame
Dates Model Resolution No. Date Reason

2012 Jul 26 - Jul 30 Aug 4 Panasonic DMC-TS3 4320 x 3240 4 Jul 9 Blurry
2013 Jul 20 - Jul 29 Jul 30 Panasonic DMC-TS3 4320 x 3240 2 Jul 16 Blurry, missing
2014 Jul 21 - Jul 29 Aug 17 Panasonic DMC-TS3 4320 x 3240 6 Jul 28 Blurry, missing
2015 Jul 26 - Jul 30 Jul 8 Panasonic DMC-TS3 4320 x 3240 - - -
2018 Jul 26 - Aug 9 * Jul 29 Nikon Coolpix AW120 4608 x 3456 1 Aug 6 Distortion
2019 Jul 25 - Aug 6 Aug 2 Nikon Coolpix AW120 4608 x 3456 3 Jul 25 Blurry, missing
2021 Jul 26 - Aug 7 Aug 7 Panasonic DMC-TS3 4320 x 3240 2 Jul 22 Blurry
* Plot H4 was sampled on August 26

Photo SubstitutionsCamera SpecificationsPhotography      
Date
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Table 2.2. Amount of positional error in each plot photograph as a result of the first order 
polynomial (affline) transformation during the georeferencing procedure. At least four ground 
control points (GCP) were applied to register the location of each image. Root mean square sum 
of all the residuals, also known as the total error or root mean square error (RMSE), is expressed 
in centimeters. Mean ( ) and standard deviation (SD) are also reported. 

 

Plot
2012 2013 2014 2015 2018 2019 2021 2012 2013 2014 2015 2018 2019 2021

D2 16 4 15 14 8 7 6 1.4 1.8 1.1 3.6 4.2 2.5 3.0
D3 15 4 15 15 11 10 9 1.0 2.3 1.1 3.3 3.4 2.8 1.9
D4 15 4 18 17 16 15 15 1.4 2.6 1.3 3.7 5.4 5.8 2.4
D5 8 4 7 5 4 4 4 0.8 0.2 5.0 6.2 3.8 3.0 2.4
D6 8 4 4 4 5 5 4 1.4 2.8 6.1 5.4 5.0 3.8 1.7
D7 13 4 11 8 4 4 4 1.0 2.2 2.0 3.7 2.6 2.1 1.2
E2 15 4 14 15 10 10 11 1.3 1.5 1.7 2.5 1.6 3.1 2.5
E3 10 4 9 7 6 6 6 1.7 0.9 2.3 2.8 5.4 3.2 4.5
E4 12 4 9 6 9 5 4 1.1 2.1 2.7 4.2 3.6 3.1 5.4
E5 9 4 8 7 5 5 4 1.1 1.5 2.4 4.8 5.4 2.3 3.9
E6 9 4 8 9 4 4 4 1.4 0.2 2.6 3.5 4.7 1.1 2.9
E7 15 4 15 12 8 6 7 1.6 3.0 1.7 3.5 4.5 3.9 3.0
F2 11 4 9 11 10 8 6 3.4 5.3 1.6 2.9 6.4 5.7 4.7
F3 8 4 6 4 4 4 4 1.8 1.3 5.7 4.1 7.2 9.0 1.3
F4 4 7 8 4 4 4 4 3.9 2.8 4.1 6.5 5.1 6.7 4.0
F5 4 4 6 6 5 4 4 2.7 3.5 3.2 2.9 10.8 3.3 1.4
F6 4 4 4 4 4 4 4 1.4 1.5 1.9 3.5 1.6 2.5 0.3
F7 4 14 11 6 5 6 4 4.1 1.1 1.6 3.9 2.2 3.3 3.5
G2 8 4 7 4 4 4 4 0.9 1.8 5.1 4.5 4.2 1.6 1.1
G3 7 4 5 4 5 4 6 1.3 0.7 2.3 5.3 5.2 2.8 2.9
G4 12 4 12 12 12 11 11 2.0 1.9 2.3 3.8 4.3 3.7 3.3
G5 4 4 4 4 4 4 4 0.8 2.5 6.2 5.5 4.9 3.3 2.1
G6 7 4 6 4 5 5 4 1.2 1.0 1.2 6.2 4.3 7.3 2.9
G7 4 4 4 4 4 4 4 0.2 2.0 8.8 6.0 5.9 2.2 1.0
H2 11 4 11 9 4 4 4 1.6 1.1 4.3 2.8 2.5 4.5 1.3
H3 5 4 4 4 4 4 4 0.8 0.6 3.4 5.0 11.5 6.2 1.8
H4 11 4 8 8 7 5 4 1.1 1.1 2.1 6.3 5.6 0.9 2.0
H5 13 4 13 9 5 5 4 0.9 1.7 1.7 4.4 3.3 1.7 2.0
H6 17 4 17 17 13 9 9 0.7 1.9 1.1 3.9 2.8 1.1 0.9
H7 5 4 4 4 4 4 4 1.8 1.8 3.8 6.0 6.8 0.7 3.5

9.5 4.4 9.1 7.9 6.4 5.8 5.5 1.5 1.8 3.0 4.4 4.8 3.4 2.5
SD 4.2 1.9 4.2 4.3 3.3 2.7 2.8 0.9 1.0 1.8 1.2 2.2 2.0 1.2

Ground Control Points (GCP) Root Mean Square Error (RMSE, cm)
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Table 2.3. Number of objects generated in each plot image as a result of the multi-resolution 
segmentation algorithm (MRS). Plots were noted with an asterisk (*) if they exhibited 
inundation. 

 
  

Plot
2012 2013 2014 2015 2018 2019 2021

D2 9564 9117 11017 10454 9473 10535 9999
D3 9609 10310 11774 11586 10730 11346 12029
D4 10074 9895 10060 10971 10127 10583 10448
D5 10279 10082* 11223 11195 11374 11133* 10591
D6 9405 9755* 10831* 11053 10556 11584 11337
D7 10085 10612* 10748 11994* 12460* 13127* 13138
E2 10391 10477 12426 11647 11828 9816 11811
E3 7258 8578* 11274 10366 9263* 9762* 9508
E4 8096* 8575* 10057 10354 10583 10905 9358
E5 8561 8262 10071 9689 10171 9907 9134
E6 10018 9432 12023 11277 11684 11959 10876
E7 10184 10353 10524 12164 11893 12490 10595
F2 7930 8969 10548 10248 9847 10200 9824
F3 7372 6634* 8656* 9800 9573* 6707* 12114
F4 10559 9005* 11913* 11681* 9578* 4614* 4263*
F5 8561 8361 11640 11000 10568 8176 9060
F6 8880 9684* 11458 11053* 11482 10707* 12430
F7 9261 9294 10671 10350 10460 9002 10795
G2 9126 7297* 10398* 9286* 10041* 10881* 11593
G3 10154 8422* 10250 9696 10000* 8337* 10883
G4 10341 10171 11874 12094 10729 9908 11980
G5 11570 8583* 10722* 10507* 10126* 9744* 8453*
G6 11964 10287* 14402* 13416 13101* 10512* 12125
G7 8795 8790* 11824* 11007 11128* 10250* 11250*
H2 12032 10859 12470* 11966* 12520* 12187* 13526
H3 9035 8832* 8320* 9411* 6000* 4397* 6852*
H4 8588 9950* 10184* 10562 9505* 10696* 11801*
H5 9573 8893 10936 10377 10505* 9994* 10221
H6 9622 8920 11746 10016 10676 10945 8411
H7 9239 9838 14264 10578 11215* 10349* 12874*

Sampling Year
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Table 2.4. List and explanation of the features calculated for each image object. 22 features were 
retained to train the machine learning classification models (noted by ✓). Texture features were 
calculated from all bands in all directions (0°, 45°, 90°, 135°), and therefore show directional 
invariance. 

 
  

Type Feature Definition
Spectral 
Indices

✓ Green-Red Vegetation 
Index (GRVI)

GRVI = (G - R) / (G + R); where G = green band, R = red band.1 Closely 
correlated to NDVI.2

o Normalized Difference 
Index Green-Blue

(G - B) / (G + B); where G = green band, B = blue band. 

o Normalized Difference 
Index Red-Blue

(R - B) / (R + B); where R = red band, B = blue band.

✓ Green Ratio (rG) rG = G / (R + G + B); where G = green band, R = red band, B = blue band. 
Evaluates phenological shifts and productivity.3

✓ Red Ratio (rR) rR = R / (R + G + B); where G = green band, R = red band, B = blue band. 
Objective is analogous to the Green Ratio, but the primary band of interest is red.

✓ Blue Ratio (rB) rB = B / (R + G + B); where G = green band, R = red band, B = blue band. 
Objective is analogous to the Green Ratio, but the primary band of interest is blue.

✓ Greenness Excess 
Index (GEI)

GEI = 2*rG - (rR + rB); where rG = Green Ratio, rR = Red Ratio, rB = Blue 
Ratio.4 May be a subtler indicator of phenological shifts than the Green Ratio.5,6

o Visible atmospheric 
resistance index 
(VARI)

VARI = (G - R) / (G + R - B); where G = green band, R = red band, B = blue 
band.7 Measure of canopy reflectance. VARI complements the purpose of the 
Atmospherically Resistant Vegetation Index (ARVI), but this index uses only RGB 
bands to mitigate differences in illumination and measure canopy reflectance.

o Mean Red Layer Mean pixel value in an image object using the red band
o Mean Green Layer Mean pixel value in an image object using the green band
o Mean Blue Layer Mean pixel value in an image object using the blue band
o Standard Deviation 

Red Layer
Standard deviation of pixel values in an image object using the red band

✓ Standard Deviation 
Green Layer

Standard deviation of pixel values in an image object using the green band

✓ Standard Deviation 
Blue Layer

Standard deviation of pixel values in an image object using the blue band

o Mean Brightness Mean pixel intensity in an image object using all available bands
o Mean Maximum 

Difference
Maximum pixel value subtracted by the minimum pixel value in each available band 
for an image object. Values are averaged.

✓ Hue Transformation of the red, green, blue (cube) color space into the hue, saturation, 
intensity (cyclindrical) color space. Hue describes the dominant color of an image 
object.

o Saturation Saturation describes the purity of color; that is, the shades of gray present in an 
image object. An image object without any gray (pure color) is unsaturated, while 
an image object with gray is fully saturated.

✓ Intensity Also referred to as brightness or value, intensity describes the degree of brightness 
in an image object.

Layer 
Values
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Table 2.4. Continued… 

 
  

Type Feature Definition
✓ Area Number of pixels in an image object.
✓ Border length Length (in pixels) of the outside border of an image object.
✓ Length Length (in pixels) of an image object.
✓ Length-to-Width Ratio Length (in pixels) divided by width (in pixels) of an image object. 
✓ Width Width (in pixels) of an image object.

Geometry 
(Shape)

o Asymmetry Values increase with higher asymmetry. An ellipse is approximated around the 
image object, then the variance in length from the major to minor axis of the ellipse 
is calculated. 

✓ Compactness Length (in pixels) multiplied by width (in pixels) of an image object, then divided by 
the total number of pixels in the image object. A image object with higher 
compactness generally has a smaller border and condensed core or area.

✓ Density Describes the pixel distribution in an image object. The most dense shape is 
considered to be a square, while the least dense shape is a filament. Density is 
calculated based on a covariance matrix by dividing the number of pixels in an 
image object by its approximate radius.

✓ Elliptic fit Measures the fit or alignment between an image object and an ellipse. Values range 
from 0 (no fit) to 1 (perfect fit).

✓ Radius of largest 
enclosed ellipse

Measures the similarity between an image object and an ellipse with the same area 
as the image object. A ratio is calculated between the radius of the largest enclosed 
ellipse to the radius of original ellipse.

✓ Radius of smallest 
enclosing ellipse

Measures the similarity between an image object and an ellipse with the same area 
as the image object. A ratio is calculated between the radius of the smallest 
enclosing ellipse to the radius of original ellipse.

o Roundness Roundness describes the similarity of an image object to an ellipse. It is measured 
by subtracting the radius of the largest enclosed ellipse by the smallest enclosing 
ellipse.

Texture 
(GLCM)8

✓ Homogeneity Measure of uniformity. Homogeneity is a weighted measure that decreases 
exponentially with greater distance from the GLCM diagonal.

✓ Contrast Measure of inertia. Contrast is a weighted measure that increases exponentially 
with greater distance from the GLCM diagonal. Contrast generally opposes 
homogeneity. The higher the contrast, the lower the homogeneity (or uniformity) 
tends to be.

o Dissimilarity Similar to contrast, but it is calculated differently. Dissimilarity is a weighted 
measure that increases linearly with greater distance from the GLCM diagonal.

o Angular Second 
Moment (ASM)

Measure of energy. The value for ASM is largest when the pixel value differences 
are constant (uniform or orderly). 

✓ Entropy Measure of spatial disorder or randomness. Entropy generally opposes ASM. The 
value for entropy is largest when the pixel value differences are inconstant (variable 
or disordered). 

Geometry 
(Extent)

1 Tucker, 1979; 2 Anderson et al., 2016; 3 Beamish et al., 2016; 4 Richardson et al., 2007; 5 Richardson et al., 2009; 
6 Ide & Oguma, 2010; 7 Gitelson et al., 2002; 8 Haralick et al., 1973.
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Table 2.5. List of classification models applied to the labeled data set. R package, dependent 
libraries, preprocessing requirements, and final tuning parameters are also summarized. Data 
were centered and scaled (CS). Near zero variance predictors were identified and removed 
(NZV). 

 
  

Model Preprocess
Code Definition Final

None mtry Number of predictors 20
Package=ranger with libraries splitrule Splitting rule extratrees
(e1071, ranger, dplyr) min.node.size Minimum node size 1

None n.trees Number of trees 50
interaction.depth Tree complexity 3
shrinkage Learning rate 0.1
n.minobsinnode Minimum node size 10

None cp Complexity parameter 0.003019845
Package=rpart with library (rpart)

CS sigma Sigma 0.04458388
Package=svmRadial with library (kernlab) C Cost 4

CS, NZV k Number of neighbors 15
Package=knn

k-Nearest Neighbor (KNN)

Support Vector Machine (SVM)

Tuning Parameters

Random Forest (RF)

Stochastic Gradient Boosting (GBM)

Classification and Regression Tree (CART)

Package=gbm with libraries (gbm, plyr)
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Table 2.6. Number of objects by class in the labeled data set split into 70% training, 15% 
validation, and 15% test using a stratified random sampling technique.  

 
  

Class Total

Bryophytes 1652 354 354 2360
Deciduous Shrubs 397 85 85 567
Forbs 294 63 62 419
Graminoids 2136 458 457 3051
Lichens 318 68 68 454
Litter 3549 760 760 5069
Shadow 1208 259 258 1725
Standing Dead 949 203 203 1355
Total 10503 2250 2247 15000

Training
(70%)

Validation
(15%)

Test
(15%)
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Table 2.7. Performance of the five machine learning classification models compared across the 
training, validation, and the test data sets. Overall accuracy (OA) and Kappa are shown for each 
data set. Minimum and maximum accuracy values are reported for the training data set, while 
95% confidence intervals are reported for the validation and test data sets. The five models were: 
Random forest = RF; stochastic gradient boosting = GBM; classification and regression tree = 
CART; support vector machine = SVM; and k-nearest neighbor = KNN. 

 
  

Training
Model OA Min Max Kappa Run Time 

(min)
RF 59.8 56.8 63.1 51.9 25.4
GBM 60.0 57.4 63.2 52.0 36.3
CART 55.5 52.0 59.8 46.8 0.1
SVM 57.4 54.9 60.7 49.3 10.6
KNN 46.8 43.1 51.3 37.6 1.9

Validation
Model OA Lower CI Upper CI Kappa
RF 60.6 58.6 62.7 52.9
GBM 60.5 58.4 62.5 52.7
CART 57.6 55.5 59.7 48.8
SVM 57.8 55.7 59.8 50.0
KNN 47.4 45.3 49.5 38.6

Test
Model OA Lower CI Upper CI Kappa
RF 60.5 58.4 62.5 52.5
GBM 59.8 57.7 61.8 51.7
CART 56.2 54.1 58.2 46.8
SVM 57.4 55.3 59.4 49.4
KNN 46.6 44.5 48.7 37.6
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Table 2.8. Importance values for the features in the optimized random forest model. Importance 
values were normalized to a value between 0 to 100. Features are further explained in Table 2.4. 

 
  

Predictor Type Raw
Intensity Layer 411.4 100.0
Green Ratio (rG) Spectral 144.3 26.5
Green-Red Vegetation Index (GRVI) Spectral 142.6 26.0
Greenness Excess Index (GEI) Spectral 116.4 18.8
Hue Layer 112.5 17.7
Density Shape 100.8 14.5
Blue Ratio (rB) Spectral 98.6 13.9
Red Ratio (rR) Spectral 95.7 13.1
Homogeneity Texture 72.5 6.7
Length-to-Width Ratio Extent 71.9 6.5
Contrast Texture 71.1 6.3
Length Extent 62.1 3.8
Standard Deviation Green Layer Layer 61.3 3.6
Radius of largest enclosed ellipse Shape 58.8 2.9
Entropy Texture 58.7 2.9
Standard Deviation Blue Layer Layer 56.2 2.2
Compactness Shape 55.8 2.1
Elliptic fit Shape 55.7 2.0
Width Extent 54.7 1.8
Radius of smallest enclosed ellipse Shape 54.4 1.7
Border length Extent 53.2 1.3
Area Extent 48.3 0.0

Normalized
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Table 2.9. Thematic accuracy of the final random forest model on the test data set represented as 
a confusion matrix. Overall accuracy (OA) is calculated from the bolded diagonal values, which 
indicates the number of image objects that were correctly classified. Kappa accounts for the 
possibility of agreement between the reference and classified data sets based on chance. 
Individual class accuracy is analyzed by producer and user accuracies. Producer accuracy (PA) is 
relied on by the mapmaker to describe the probability that a real-life object is classified correctly 
in the image. User accuracy (UA) is relied on by the map user to describe the probability that a 
classified object in an image matches the object in real-life. Bryophytes = BRYO; Deciduous 
Shrubs = DSHR; Forbs = FORB; Graminoids = GRAM; Lichens = LICH; Litter = LITT; 
Shadow = SHAD; Standing Dead = STAD. 

 
  

BRYO DSHR FORB GRAM LICH LITT SHAD STAD
BRYO 178 14 3 28 0 92 27 0 52.0
DSHR 50 34 7 73 2 47 5 0 15.6
FORB 2 9 41 22 1 3 0 0 52.6
GRAM 16 16 8 270 0 35 0 4 77.4
LICH 6 3 2 20 38 74 0 43 20.4
LITT 47 8 1 18 9 431 9 6 81.5
SHAD 55 1 0 3 0 35 217 0 69.8
STAD 0 0 0 23 18 43 0 150 64.1
PA 50.3 40.0 66.1 59.1 55.9 56.7 84.1 73.9
OA 60.5
Kappa 52.5

Pr
ed

ic
te

d

Observed
UA
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Table 2.10. Comparison of relative cover estimates between the point frame (left) and plot 
photography (right) vegetation sampling methods. Values represent the presence (frequency, F), 
mean ( ), and standard deviation (SD) of the relative cover estimates of each growth form across 
sampling years. Note the mean ( ) are for the plots in which they occurred (noted by the 
frequency).    

 
  

2012 2013 2014 2015 2018 2019 2021 2012 2013 2014 2015 2018 2019 2021
Bryophytes

F 29 29 29 29 27 27 27 30 30 30 30 30 30 30
17.9 20.5 19.0 14.5 25.8 11.6 11.9 15.5 19.3 17.9 10.1 11.0 10.6 13.0

SD 7.9 8.0 10.3 5.5 7.9 5.6 5.6 11.0 10.8 8.3 5.8 7.9 7.0 9.3
Deciduous Shrubs

F 11 12 11 9 12 9 11 30 30 30 30 30 30 30
16.9 16.8 6.3 15.4 9.5 18.0 17.5 4.0 4.8 3.9 4.2 3.8 3.2 3.4

SD 9.5 4.9 3.7 8.1 3.6 6.2 6.5 7.5 8.4 7.1 7.9 7.0 6.2 6.1
Forbs

F 24 25 24 22 22 21 23 30 30 25 30 27 30 30
4.7 8.1 2.1 5.1 2.8 12.1 6.6 3.7 5.7 3.0 5.3 3.5 4.7 4.2

SD 10.5 13.5 5.8 11.3 9.4 16.1 13.8 6.6 7.1 4.1 11.7 8.0 10.2 8.3
Graminoids

F 30 30 30 30 30 30 30 30 30 30 30 30 30 30
14.7 21.0 16.8 18.8 16.4 33.1 22.3 23.0 37.6 23.2 36.2 35.8 40.2 36.7

SD 10.7 10.7 15.7 14.4 14.1 14.7 15.5 9.4 12.3 8.8 13.4 14.5 12.6 18.2
Lichens

F 20 18 19 18 19 16 16 30 30 30 30 30 30 30
2.7 4.0 8.0 5.5 7.5 4.1 5.2 6.5 9.1 7.7 5.4 6.0 5.9 7.1

SD 1.7 1.9 3.3 2.9 3.0 2.5 1.9 8.2 11.1 9.4 7.5 8.7 8.4 9.8
Litter

F 29 30 30 30 30 30 29 30 30 30 30 30 30 30
35.8 20.4 31.9 29.7 24.2 12.4 24.1 10.7 11.6 19.8 24.1 24.2 21.8 30.6

SD 14.7 11.9 15.3 15.4 11.0 9.9 12.5 9.1 8.7 11.7 8.9 10.0 11.7 10.8
Standing Dead

F 30 30 30 30 30 30 28 30 30 30 30 30 30 30
7.3 9.2 15.8 10.9 13.8 8.8 12.4 36.5 11.9 24.5 14.7 15.8 13.6 4.9

SD 4.5 3.8 5.2 3.8 4.5 4.1 5.5 8.0 5.2 7.3 6.5 8.1 7.5 3.4

Plot PhotographyPoint Frame
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Table 2.11. Spearman-Rank correlation values (rho) show the positive, negative, or lack of 
association between the point frame and image estimates of relative cover by growth form and 
year. P-values (p) are also shown and bolded when significant (≤ 0.05).  

 
  

Rho P Rho P Rho P Rho P Rho P Rho P Rho P Min Rho Max Rho
Bryophytes 0.23 0.23 -0.13 0.51 0.25 0.18 0.46 0.01 0.33 0.08 0.28 0.14 0.64 0.00 -0.13 0.64
Deciduous Shrubs 0.14 0.45 0.17 0.38 0.20 0.29 0.16 0.41 0.49 0.01 0.21 0.26 0.59 0.00 0.14 0.59
Forbs 0.38 0.04 0.16 0.39 0.17 0.37 0.40 0.03 0.31 0.10 0.12 0.52 0.47 0.01 0.12 0.47
Graminoids 0.69 0.00 0.60 0.00 0.43 0.02 0.82 0.00 0.79 0.00 0.73 0.00 0.84 0.00 0.43 0.84
Lichens 0.41 0.02 0.79 0.00 0.50 0.00 0.81 0.00 0.42 0.02 0.78 0.00 0.30 0.11 0.30 0.81
Litter 0.24 0.21 0.00 0.99 -0.25 0.19 -0.36 0.05 -0.14 0.47 -0.41 0.03 -0.08 0.67 -0.41 0.24
Standing Dead 0.18 0.35 -0.29 0.12 0.27 0.14 0.32 0.09 0.14 0.47 0.43 0.02 -0.05 0.81 -0.29 0.43

2012 202120192018201520142013
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Table 2.12. In-sample model performance. From left to right, in-sample performance of the 
relative abundance estimates of vegetation classes based on direct substitution of the image-
based estimates and conditional predictions. Conditional predictions included the fixed effects 
covariates and random effects of plot. Model performance is illustrated by mean absolute error 
(MAE) and bias. MAE was calculated as the average absolute difference between the predicted 
proportion of vegetation in each class and the observed proportion in each class 
(mean(absolute(predicted – observed))). Bias was calculated as the mean difference between the 
two proportions in each class ((mean(predicted – observed))). 

  

Bias
Bryophytes 0.09 0.03 0.05 0.00
Deciduous Shrubs 0.12 0.10 0.01 0.00
Forbs 0.04 0.02 0.01 0.00
Graminoids 0.14 - 0.13 0.06 0.00
Lichens 0.06 - 0.02 0.01 0.00
Litter 0.17 0.05 0.08 0.00
Standing Dead 0.10 - 0.06 0.08 0.00

Conditional
MAE Bias MAE

Direct Substitution
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Table 2.13. Out-of-sample model performance of the temporal comparison. From left to right, 
out-of-sample performance of the relative abundance estimates of vegetation classes from 
holdout years (2018-2021) based on direct substitution of the image-based estimates, fixed 
effects covariates only, random effects of plot only, and the interaction of the fixed effects 
covariates and random effects of plot. Model performance is illustrated by mean absolute error 
(MAE) and bias. MAE was calculated as the average absolute difference between the predicted 
proportion of vegetation in each class and the observed proportion in each class 
(mean(absolute(predicted – observed))). Bias was calculated as the mean difference between the 
two proportions in each class ((mean(predicted – observed))). 

 
  

Bryophytes 0.09 0.05 0.06 0.03 0.07 0.04 0.07 0.03
Deciduous Shrubs 0.12 0.12 0.05 0.00 0.01 0.01 0.01 0.00
Forbs 0.04 0.03 0.03 0.01 0.02 0.00 0.02 0.01
Graminoids 0.15 - 0.14 0.08 - 0.04 0.10 - 0.08 0.07 - 0.04
Lichens 0.06 - 0.01 0.06 0.00 0.02 0.01 0.02 0.00
Litter 0.15 - 0.05 0.12 - 0.10 0.11 - 0.10 0.11 - 0.10
Standing Dead 0.07 0.00 0.11 0.10 0.12 0.11 0.10 0.09

MAE Bias MAE Bias
Random Effects ConditionalFixed Effects

MAE Bias MAE Bias
Direct Substitution
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Table 2.14. Out-of-sample model performance of the spatial comparison. From left to right, out-
of-sample performance of the relative abundance estimates of vegetation classes from ten 
holdout plots based on direct substitution of the image-based estimates and conditional 
predictions. Conditional predictions included the fixed effects covariates and random effects of 
plot. Model performance is illustrated by mean absolute error (MAE) and bias. MAE was 
calculated as the average absolute difference between the predicted proportion of vegetation in 
each class and the observed proportion in each class (mean(absolute(predicted – observed))). 
Bias was calculated as the mean difference between the two proportions in each class 
((mean(predicted – observed))). 

 

 

 

  

Bryophytes 0.08 0.05 0.08 0.05
Deciduous Shrubs 0.10 0.09 0.05 0.01
Forbs 0.04 0.02 0.04 - 0.01
Graminoids 0.16 - 0.13 0.09 0.02
Lichens 0.07 - 0.04 0.09 - 0.05
Litter 0.22 0.10 0.11 - 0.02
Standing Dead 0.11 - 0.09 0.09 0.01

BiasMAE
Conditional

MAE Bias
Direct Substitution
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Figure 2.1. Map of the research site. The site is stationed on the Barrow Peninsula near the city 
of Utqiaġvik, Alaska. The 30 vegetation plots in this analysis are represented by white squares. 
These plots are part of a larger collection of 98 plots, which are evenly distributed at a 100-meter 
interval across the Arctic System Science (ARCSS) grid. The site is adjacent to the warming 
experiments associated with the International Tundra Experiment (ITEX). 
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Figure 2.2. Examples of unacceptable plot images. The most common reasons to replace a plot 
image were (A) poor camera angle, (B) discoloration and edge distortion from direct sunlight, 
(C) blurriness, and (D) plot was not fully visible. If the plot was sampled too early (E) or too late 
in the season (F), then the images were not analyzed because the vegetation was not at peak 
greenness. Other issues with plot images include: missing plots, low resolution photographs, 
extensive areas of shadow (generally due to low solar angles and direct sunlight), and snow or 
standing water that obscures vegetation. 
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Figure 2.3. Schematic of the workflows for the plot photography (left) and point frame (right) 
vegetation sampling methods. The steps to process plot images were based on GEOBIA 
framework: data acquisition, preprocess plot images in ArcGIS Pro, segmentation and 
preliminary classification in eCognition, and model development and selection in RStudio. The 
results of image analysis are visualized in Supplemental Figures 2.S1, 2.S2, and 2.S3. 
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Figure 2.4. Image of a plot. (A) Field diagram shows the arrangement of the permanent tags in 
plot H2. (B) Plot H2 is photographed on July 30, 2013. The permanent tags in the plots, along 
with the corner stakes, were used to correct the orientation of the image during the 
georeferencing procedure. (C) The point frame was aligned using the permanent tags prior to 
point frame vegetation sampling on July 29, 2014. 
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Figure 2.5. Overview of the total number of image objects. Image objects were partitioned into 
masked, labeled, and unclassified sets. Masked image objects were removed from analysis. 
Labeled image objects were used to train, validate, and test the models. Unclassified image 
objects were classified using the optimal machine learning classifier. Cover was calculated from 
the categories denoted by an asterisk (*).  
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Figure 2.6. In-sample model performance of the raw data, which was based on direct 
substitution. Each panel shows a vegetation class. Each point shows the predicted proportion of a 
vegetation class in each plot at each time point. The y-axis relates to the observed point frame 
counts of abundance, while the x-axis relates to the image estimates. Histograms on each axis 
show the raw data distributions. Insets within each panel illustrate model performance using 
mean absolute error (MAE) and bias. The 1:1 reference line is included as a visual aid on all 
plots. 
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Figure 2.7. Parameter estimates shown for each vegetation class in the full model as evaluated 
by in-sample model performance. The credible interval is noted by a red vertical line. A 
distribution above the credible interval implies an analogous relationship between the two 
methods of sampling. A distribution below the credible interval implies an inverse relationship 
between the two methods of sampling. Bryophytes = BRYO; Deciduous Shrubs = DSHR; Forbs 
= FORB; Graminoids = GRAM; Lichens = LICH; Litter = LITT; Shadow = SHAD; Standing 
Dead = STAD.  
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Supplemental Figure 2.S1. Example of the image segmentation and classification of a plot. (A) 
Extent of plot D2. Scale is increased to show the (B) vegetation in the plot, (C) primitive image 
objects as a result of multi-resolution segmentation, and (D) final classification of the image 
objects using the optimized random forest model.  
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Supplemental Figure 2.S2. Classification of a non-inundated plot through time. (A) Location of 
plot D2 in the context of the research site. Left panels show plot photographs and right panels 
show the corresponding image classification across seven sampling years (2012, 2013, 2014, 
2015, 2018, 2019, 2021). 
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Supplemental Figure 2.S2. Continued… 
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Supplemental Figure 2.S2. Continued… 
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Supplemental Figure 2.S2. Continued… 
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Supplemental Figure 2.S3. Classification of a frequently inundated plot through time. (A) 
Location of plot G3 in the context of the research site. Left panels show plot photographs and 
right panels show the corresponding image classification across seven sampling years (2012, 
2013, 2014, 2015, 2018, 2019, 2021). 
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Supplemental Figure 2.S3. Continued…  
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Supplemental Figure 2.S3. Continued…  



112 
 

 
Supplemental Figure 2.S3. Continued…  
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Chapter 3 

Extended Review of Literature 

Global climate change is disturbing ecosystem structure and function (Allen et al., 2018). 

As the Arctic warms at an accelerated rate, Arctic ecosystems are undergoing widespread change 

(Chapin et al., 2005; Pearson et al., 2013). Over the last three decades, Arctic vegetation 

increased in height, and graminoid and shrub densities increased (Bjorkman et al., 2019; Epstein 

et al., 2013; Myers-Smith et al., 2019). Rising atmospheric levels of methane and carbon dioxide 

are attributed, in part, to permafrost thaw and collapse (Schuur et al., 2015). Sea ice, snow cover 

and glacial extent are also diminishing in a warming climate (Kowk, 2018; Rixen et al., 2022). 

As warming amplifies, we expect to see greater change in Arctic vegetation composition and 

structure, hydrologic processes and energy cycles with dire implications for global function and 

ecosystem services (Allen et al., 2018).  

Vegetation plays a vital role in Arctic ecosystems (Chapin et al., 1996). Plants form the 

foundation of the Arctic food web and contribute to feedback mechanisms that may reinforce or 

diminish climatic shift (Chapin et al., 2005; Pearson et al., 2013). As the climate shifts, plants 

face three options: adapt, move or perish (Aitken et al., 2008). Alterations in dominant 

vegetation type, cover or density may affect community structure, nutrient cycling and 

ecosystem function in the Arctic (Epstein et al., 2013). Thus, it is critical to observe, explain and 

predict the complex effects of climate change on plant communities. Changing vegetation cover 

has global implications (Allen et al., 2018; Pearson et al., 2013; Post et al., 2019).  

In situ field experiments have a long history in Arctic ecological research. Aboveground 

biomass sampling is precise but destructive, so this method cannot be applied to long-term 

monitoring studies. Visual cover estimation is non-destructive, but this method may suffer from 
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subjectivity based on the observer (Vittoz & Guisan, 2007). Although point frame sampling is 

less effected by errors than its non-destructive counterpart, this method is also time-consuming 

(Harris et al., 2021; May & Hollister, 2012). In situ field studies are particularly valuable to: 

provide precise terrestrial data at a fine-scale resolution, validate, or ground truth, imagery from 

different scales, calibrate sensors and maximize the knowledge from indigenous communities 

(Anderson et al., 2016; Healey et al., 2014; Myers-Smith et al., 2020). However, Arctic field 

studies pose logistical difficulties, which are compounded by high expense and limited 

spatiotemporal resolution. Although in situ field studies remain critical today, especially for 

sensor calibration and validation, the trend toward remotely-sensed spatial analyses continues 

(Beamish et al., 2020). 

Remote sensing is a scientific field of study that uses sensors to observe, record and 

characterize distant objects by reflected (passive) or emitted (active) electromagnetic radiation 

(Tempfli et al., 2009). Standard optical sensors capture red, green, and blue wavelengths, or 

bands, which are visible to the human eye. Infrared and near-infrared sensors record bands that 

assist with classifying vegetation, but these are not visible to the human eye (Xue & Su, 2017). 

Broadband multispectral sensors capture electromagnetic wavelengths with several wide bands, 

while narrowband hyperspectral sensors capture wavelengths with hundreds of narrow bands 

(Goetz et al., 1985). Sensors may be affixed to remote-sensing platforms at the plot level 

(handheld digital photography, PhenoCams), low altitudes (drone), high altitudes (helicopter, 

fixed-wing plane) or spaceborne levels (satellite) (Tempfli et al., 2009).  

Remote-sensing capabilities and platforms have expanded as technology improves over 

time (Beamish et al., 2020). Historically, traditional studies relied on satellite imagery to map 

land cover, identify vegetation classes and illustrate vegetation change in polar regions (Bunn & 
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Goetz, 2006; Stow et al., 2004). However, greater precision was needed to assess long-term 

trends and abrupt environmental change in the Arctic (Du et al., 2019). Arctic landscapes boast 

frequent cloud cover, low vegetation productivity, high biomass, shallow water bodies, uneven 

ice polygons and heterogenous snow melt, which makes remotely-sensed data, especially at 

aerial and satellite levels, more error-prone than other landscapes (Stow et al., 2004). Validation 

of remotely-sensed data is critical in the Arctic (Beamish et al., 2020; Du et al., 2019; Myers-

Smith et al., 2020). 

Recent studies have relied on PhenoCams or drones to resolve the spatiotemporal 

limitations of aerial or satellite platforms (Anderson & Gaston, 2013). Drones are less expensive, 

easy to use and offer a scale customizable by the operator. Drones became commercially 

available in 2005 (Marris, 2013). Due to high startup costs, there were very few users until 

abundance had increased and prices were lowered by 2015 (Nowak et al., 2018). Presently, 

drones are not widely used nor fully exploited in the Arctic (Du et al., 2019). Drones have been 

deployed to monitor geomorphological change in glacial valleys, which has helped capture 

changeable glacial patterns and eliminate the hassle of manned aerial surveys via manned aircraft 

(Bliakharskii et al., 2019; Ewertowski et al., 2019). Other preliminary polar studies explore sea 

ice extent, vegetation cover, and phenological patterns (Fraser et al., 2016; Malenovský et al., 

2017; McPartland et al., 2019; Turner et al., 2019). There is great potential for drone usage in the 

Arctic (Nowak et al., 2018). 

There is also great potential for plot photography in the Arctic. Vegetation cover and 

change over time has been successfully measured using high resolution, plot-level photographs 

in primarily temperate regions (Laliberte et al., 2007; Luscier et al., 2006; Michel et al., 2010; 

Wallace et al., 2019). Fewer studies have analyzed vegetation cover in plot-level photographs in 
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the Arctic or Antarctic using an object-based approach (Chen et al., 2010; King et al., 2020; Liu 

& Treitz, 2016). Plot-level photographs of Arctic vegetation could bridge the gap in observations 

across different scales. We expect that drones will become a more readily used tool in the Arctic, 

as there is an increasing need for geospatial information and integration across platforms, and 

plot-level photographs may be relied upon to validate this information (Du et al., 2019). We also 

expect advancements in satellite technology to continue to increase the resolution of readily 

available imagery (Shiklomanov et al., 2019). The integration of data across different platforms 

has become a critical focus of research in order to validate observations across different scales 

(Beamish et al., 2020; Du et al., 2019; Myers-Smith et al., 2020). 

Improvements in the resolution and frequency of images, in addition to greater 

computational power available to researchers, have expanded the ways in which images can be 

analyzed (Blaschke & Strobl, 2001; Hay et al., 2001). Images may be evaluated using pixel-

based analysis or GEographic Object-based Image Analysis (GEOBIA), or more generally, 

object-based image analysis (OBIA). Images are made of many pixels, therefore pixels 

determine the scale of an image and how a landscape can be understood and modeled (Marceau, 

1999; Strahler et al., 1986). In pixel-based analysis, each pixel is examined and classified in 

isolation from neighboring pixels. In GEOBIA, groups of homogeneous pixels are delineated, 

built into objects, and analyzed (Hay & Castilla, 2008, 2006; S. Lang, 2008).  

Pixel-based analysis is often successful on coarse resolution imagery, which aligned well 

with the data acquired from satellites launched in the 1980’s to 2000’s (Blaschke et al., 2014). 

Historically, satellite imagery was not fine enough to warrant an exact analysis (Landsat: 30 m2; 

MODIS: 500 m2). In coarse resolution imagery, one pixel may contain multiple features, so it is 

best to categorize these mixed pixels by their dominant spectral signature (Congalton & Green, 
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2009). This method has proven reliable in images depicting urban and agricultural landscapes, 

where features are uniform and easy to distinguish using high contrast spectral signatures (S. 

Lang, 2008; Platt & Rapoza, 2008). It is not as effective in high resolution imagery, where 

multiple pixels may contain one feature (Aplin, 2006; Chen et al., 2012). Very high resolution 

(VHR) satellite imagery, where the pixel resolution is greater than 5 m, renders traditional pixel-

based analysis inadequate (Blaschke et al., 2014; Chen et al., 2012; Hussain et al., 2013). 

GEOBIA is gaining momentum as imagery increases in spatiotemporal resolution 

(Blaschke, 2010; Blaschke et al., 2014; Dronova, 2015; Kucharczyk et al., 2020; Ma et al., 

2017). As long as the images are high resolution, such that the objects of interest are three to five 

times larger than the number of pixels in the object, then this approach can be confidently 

applied. High resolution imagery generally contains more noise than low resolution imagery. 

Classifying objects, rather than pixels, may decrease the noise in high resolution images 

(Blaschke et al., 2014). Ancillary data, such as shape and texture, and expert knowledge from the 

user may improve the precision of object-based method of analysis (Blaschke et al., 2000; Platt 

& Rapoza, 2008). Textural, geometric, contextual features and expert knowledge from the user 

can be included for improved classification accuracy (Platt & Rapoza, 2008).  

Arctic vegetation is a particular challenge for image analysis due to small vegetation 

species and structure, diverse composition, and low spectral contrast within vegetation 

communities (Buchhorn et al., 2013; Davidson et al., 2016; Schapeman-Strub et al., 2009). 

However, GEOBIA has been successful in classifying images with high spatial but low spectral 

resolution (Blaschke et al., 2014; Halabisky et al., 2011; Husson et al., 2016; Laliberte & Rango, 

2011). GEOBIA has been implemented less frequently on plot-level photographs of Arctic 



118 
 

vegetation (Chen et al., 2010; King et al., 2020; Liu & Treitz, 2016). There is great potential to 

expand the application of GEOBIA in the Arctic. 

Remote sensing greatly contributes to our understanding of historical interactions, 

processes, and change across landscapes (Epstein et al., 2012). As we seek to understand the 

effects of a warming climate on Arctic vegetation, remote sensing and image analysis remain 

important tools for observing vegetation trends at varying scales (Dronova, 2015; Phiri & 

Morgenroth, 2017; Torres-Sánchez et al., 2015). The shift from pixel-based to object-based 

image analysis is more likely permanent as technology continues to improve, yielding high 

resolution images (Blaschke et al., 2014). An object-based approach is promising, but it has not 

been thoroughly tested on plot-level photographs in the Arctic to analyze vegetation cover and 

change. Plot-level photographs may help understand the complexities of changing vegetation in 

response to climate change. 
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Extended Methodology 

ITEX-AON History 

The International Tundra Experiment (ITEX) was established by an assembly of Arctic 

researchers in 1990 (Webber & Walker, 1991). ITEX established a warming experiment using 

open-top chambers (OTCs) to preview the effects of warmer temperature on Arctic vegetation. 

An open-top chamber passively raises the temperature within a vegetation plot from 1 to 3°C 

(Henry & Molau, 1997; Hollister et al., 2006). The ITEX experimental design generally included 

an even number of control and treatment (OTC) plots across different habitat types in the Arctic. 

The direction of early research focused on measuring vegetation growth, abundance, 

productivity, and response to warming. Protocols were developed and shared (Molau & 

Mølgaard, 1996), which have made it an important network over time (Fraser et al., 2012). 

Repeat measurements of vegetation at the plot level across Arctic sites allows for synthesis 

studies to examine general vegetation trends across space and time (Arft et al., 1999; Elmendorf, 

Henry, Hollister, Björk, Bjorkman, et al., 2012; Oberbauer et al., 2007; Walker et al., 2006). 

Research has since expanded to examine shifts in phenology or community assemblages, 

intraspecific trait variation, and carbon release. Since the establishment of ITEX over thirty years 

ago, collaboration continues across the network, where ongoing research efforts are shared at 

workshops, annual (or biennial) conferences, and site visits.  

The International Tundra Experiment – Arctic Observing Network (ITEX-AON) is a 

collaborative group of ITEX researchers based in the United States of America. ITEX-AON is 

currently comprised of Grand Valley State University (GVSU), University of Texas at El Paso 

(UTEP), Florida International University (FIU), and University of Alaska Anchorage (UAA). 

Four research sites are maintained and monitored on the North Slope of Alaska: Utqiaġvik, 
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Atqasuk, Toolik Lake, and Imnaviat Creek (Figure 3.1). This network is funded primarily by the 

Arctic Observing Network (AON) program by the National Science Foundation, which was 

established as the primary source of funding in 2006 (awards: 0856516, 1432277, 1504224, 

1836839). All data are published through the Arctic Data Center. Supplemental data from this 

thesis are provided (Supplemental Figures 3.1-3.3).  

Measurements are generally bounded by the Arctic System Science (ARCSS) grids at 

each research site, which span 1-km2. The ARCSS sampling grids were established in the early 

to mid-1990’s and funded by the Arctic System Science (ARCSS) Program of the National 

Science Foundation (Brown et al., 2000). Each grid contains 100 sampling points which are 

evenly spaced across 1-km2. The ARCSS grid at Utqiaġvik, Alaska contains 98 vegetation plots 

corresponding to 98 sampling points. 30 vegetation plots are sampled annually using point 

frame-based sampling. A number of other vegetation-based measurements, including measures 

of phenology, height, and reproductive capacity, are also recorded throughout the field season. 

The vegetation plots are photographed using a standard handheld camera at the plot level and an 

unmanned aerial vehicle, or drone, at an elevation of 80 to 100 m. Soil temperature, thaw depth, 

and hyperspectral reflectance are also recorded at the plot level throughout the field season. 

Each of the four research sites also contains a long-term warming experimental design 

(ITEX), a mobile-instrumented sensor platform (MISP), and a climate data tower, which 

monitors environmental data on a daily basis. ITEX plots are divided into two habitat types at 

each research site. Dry heath and moist acidic sites are stationed at Utqiaġvik, while dry heath 

and wet meadow sites are stationed at Atqasuk. Each ITEX site has an equal number of control 

and experimentally warmed vegetation plots. Open-top chambers are installed at the start of the 
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field season in early June. These are removed before steady snowfall begins, usually in late 

August.  

The mobile-instrumented sensor platform (MISP) spans a 50-meter transect at Utqiaġvik, 

Atqasuk, Toolik Lake, and Imnaviat Creek. Spectral data are collected daily along the transect, 

although technical difficulties and poor weather frequently interrupt data collection at Utqiaġvik 

and Atqasuk. Oblique photographs are captured on an hourly basis by a PhenoCam affixed to the 

existing MISP infrastructure. Annual light detection and ranging (LiDAR) scans are also 

captured along this transect, providing information on the plant canopy and subsidence or heave 

from underlying permafrost. Kite aerial photography transitioned permanently to drone 

photography in 2018. 
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Figure 3.1. Four research sites are maintained and monitored by ITEX-AON on the North Slope 
of Alaska: Utqiaġvik (blue), Atqasuk (red), Toolik Lake (light yellow), and Imnaviat Creek (dark 
yellow). 
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Supplemental Figure 3.S1. Box and whisker plots showing the relative cover of each growth 
form across seven sampling years. Image estimates are shown in light gray, while point frame 
estimates are shown in dark grey (n = 30 plots). 
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Supplemental Figure 3.S1. Continued…  
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Supplemental Figure 3.S1. Continued…  
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Supplemental Figure 3.S1. Continued…  
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Supplemental Figure 3.S2. Box and whisker plot showing the relative cover of shadow from the 
image estimates across seven sampling years (n = 30 plots). 
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Supplemental Figure 3.S3. Relative cover estimates from the point frame (upper panel) and plot 
photography (lower panel) vegetation sampling methods. Bars are colored according to growth 
form: Bryophytes = Purple, Deciduous Shrubs = Brown, Forbs = Red, Graminoids = Blue, 
Lichens = Yellow, Litter = Gray, Standing Dead = Black.  
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Annotated R Code 

Caret stands for Classification And Regression Training, which allows the user to 

execute a variety of machine learning classifiers using standard syntax. Auxiliary tasks such as 

data preparation, data splitting, variable selection, and model evaluation can also be integrated 

using this package. Caret is described in great detail with practical examples by the original 

author, Max Kuhn, at https://topepo.github.io/caret/index.html. Technical issues can be 

submitted to him directly at https://github.com/topepo/caret/issues, as he continues to maintain 

this package.  

All statistical analyses were performed using RStudio v. 1.4 (Boston, Massachusetts). 

Annotated samples of code are included for each statistical test. Additional code and data sets are 

included in the supplemental materials for this thesis, which are saved to the shared Arctic 

Ecology Program (AEP) computer drive. 

#Install and load packages. 

install.packages(c("tidyverse", "dplyr", "caret", "tictoc", 

"e1071", "ranger", "gbm", "rpart", "kernlab")) 

Packages <- c("tidyverse", "dplyr", "caret", "tictoc", "e1071", 

"ranger", "gbm", "rpart", "kernlab") 

lapply(Packages, library, character.only = TRUE) 

 

#Set privileges: 

setwd("D:/R/...") 

 

#Anderson-Darling Normality Test: 

#Shapiro-Wilk normality test only supports a sample size of 3 - 

5,000 records, which exceeds my sample size of 15,000 records. 

install.packages('nortest') 

library(nortest) 

a <- lapply(select(trainee,-class), ad.test) 

https://topepo.github.io/caret/index.html
https://github.com/topepo/caret/issues
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ad <- sapply(a, '[', c("statistic","p.value")) 

t(ad) 

 

#Feature selection: 

#Note: correlation coefficients are standardized when they are 

calculated, allowing for comparison between numerical predictors 

with different scales.  

#trainee is the labeled data set (n = 15,000 records). trainee 

contains a column for class (eight vegetation classes) and 

numerous columns for features. 

cor_trainee <- cor(dplyr::select(trainee,-class), method = 

"spearman") #Pearson is default. 

findCorrelation(cor_trainee, cutoff = 0.95, names = TRUE) 

#Reveals predictors that result in pairwise correlations greater 

than 95%, i.e., proposed index of column numbers for removal. 

filtered.95 <- subset(trainee, select = -c(v1, v2, v3 ... vx)) 

#Find the two correlated variables: keep the most logical 

variable, remove the least logical variable. 

 

#Split into training (70%) and test (30%): 

set.seed(1) 

f.95.100 <- createDataPartition(y=filtered.95$class, p=.7, list = 

FALSE) #Creates balanced split of the data (stratified random 

sampling).  

f95.100.trn <- filtered.95[f.95.100,] 

f95.100.tst <- filtered.95[-f.95.100,] 

#Summarize the data to confirm stratified counts: 

f95.100.trn %>% 

  group_by(class) %>% 

  summarise(n()) 

f95.100.tst %>% 

  group_by(class) %>% 

  summarise(n()) 
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#Split test into validation (15%) and test (15%): 

set.seed(2) 

f.95 <- createDataPartition(y=f95.100.tst$class, p=.5, list = 

FALSE) 

f95.100.val <- f95.100.tst[f.95,] 

f95.100.tst <- f95.100.tst[-f.95,] 

#Summarize the data to confirm counts: 

f95.100.val %>% 

  group_by(class) %>% 

  summarise(n()) 

f95.100.tst %>% 

  group_by(class) %>% 

  summarise(n()) 

 

#Establish five repeats of 10-fold cross validation: 

tc <- trainControl( 

  method = "repeatedcv",  

  number = 10,  

  repeats = 5, 

  sampling = "down") 

 

#Train the model 

#This is an iterative process, which requires different tuning 

grids or tuning values (tuneLength). 

#Set an identical seed across all models to ensure resampling 

sets are identical for each model. 

tic("rf.model") 

rf_grid <- expand.grid(mtry = c(2,4,6,8,10,12,14,16,18,20,22), 

                       splitrule = c("gini", "extratrees"), 

                       min.node.size = 1) 

set.seed(2021) #Pre-processing requirements: none 
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rf.model2 <- train(class ~ ., data = f95.100.trn,  

                  method = "ranger", 

                  trControl = tc, 

                  tuneGrid = rf_grid, 

                  importance = "impurity") 

toc() 

saveRDS(rf.model2, "./rf.model.rds") #Save model 

rf.model <- readRDS("./rf.model.rds") #Open and re-name model 

 

tic("gbm.model") 

gbm_grid <- expand.grid(interaction.depth = c(1,2,3,5,9), 

                        n.trees = c(50,100,150,200,250,300), 

                        shrinkage = 0.1, 

                        n.minobsinnode = 10) 

set.seed(2021) #Pre-processing requirements: none 

gbm.model <- train(class ~ ., data = f95.100.trn,  

                   method = "gbm", 

                   trControl = tc, 

                   tuneGrid = gbm_grid, 

                   verbose = FALSE) 

toc() 

 

tic("cart.model") 

set.seed(2021) #Pre-processing requirements: none 

cart.model <- train(class ~ ., data = f95.100.trn,  

                    method = "rpart", 

                    trControl = tc, 

                    tuneLength = 10) 

toc() 
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tic("svm.model") 

set.seed(2021) #Pre-processing requirements: center, scale 

svm.model <- train(class ~ ., data = f95.100.trn, 

                    method = "svmRadial", 

                    preProcess = c("center", "scale"), 

                    trControl = tc, 

                    tuneLength = 10) 

toc() 

 

tic("knn.model") 

set.seed(2021) #Pre-processing requirements: center, scale, nzv 

knn.model <- train(class ~ ., data = f95.100.trn,  

                   method = "knn", 

                   preProcess = c("center", "scale", "nzv"), 

                   trControl = tc, 

                   tuneLength = 20) 

toc() 

 

#Update model with selected parameters  

tic("final.rf") 

set.seed(2021) 

final.rf <- update(rf.model, param = list(mtry=36, 

splitrule="extratrees", min.node.size=1)) 

toc() 

 

#Options to visualize results: 

splom(res, metric = "Accuracy") #Scattermatrix 

xyplot(res, metric = "Accuracy") #Close up scattermatrix 

dotplot(res, metric = "Accuracy") 

 

#Examine and test performance of the trained model only: 
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res <- resamples(list(RF = rf.model, 

                      GBM = gbm.model, 

                      CART = cart.model,   

                      SVM = svm.model, 

                      KNN = knn.model)) 

summary(res) 

modelDiffs <- diff(res) #Are there differences between the 

models? 

summary(modelDiffs) #Null hypothesis: There is no difference 

between the models. P-values are on the lower diagonal. 

 

#Validate or test the model: 

set.seed(2021) 

rf.predict <- predict(rf.model, f95.100.tst) 

confusionMatrix(rf.predict, f95.100.tst$class) 

 

#View the importance scores for the model: 

varImp(rf.model)$importance %>% 

  mutate(names = row.names(.)) %>% 

  arrange(-Overall) 

#Note: varImp will only work if the importance values have been 

calculated in the train function for random forest. 

 

#Spearman-Rank Correlations: 

#Correlations are repeated for every vegetation class (bryophyte, 

deciduous shrub, forb, graminoid, lichen, litt, standing dead) 

between the two sampling methods (OBIA and PF) for each year 

(2012:2015, 2018, 2019, 2021). 

cor.test(a2021$bryo_OBIA, a2021$bryo_PF, method = "spearman") 

cor.test(a2021$dshr_OBIA, a2021$dshr_PF, method = "spearman") 

cor.test(a2021$forb_OBIA, a2021$forb_PF, method = "spearman") 

cor.test(a2021$gram_OBIA, a2021$gram_PF, method = "spearman") 
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cor.test(a2021$lich_OBIA, a2021$lich_PF, method = "spearman") 

cor.test(a2021$litt_OBIA, a2021$litt_PF, method = "spearman") 

cor.test(a2021$dead_OBIA, a2021$dead_PF, method = "spearman") 
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