STA 215 R Sheet ggformula How-To

Note: In the How-To Sheet wherever you see something inside < > you want to replace that in the code. For example, if you see < EXPLANATORY > then you want to replace all of this, including the < >, with the name of the explanatory variable.

Note: R does not recognize "" marks when copied from Word. You must re-type them inside of R. For example, if you see "<CATEGORY>" you would replace <CATEGORY> with the name of the category, and you would retype the " at the beginning and the " at the end within R.

Utilities

Accessing RStudio Server

See the Handout: Accessing RStudio Server

Opening a Software Investigation Program File

See the Handout: Software Investigation Starter Programs

Working in R

See the Handout: Working in RMarkdown

Loading Packages

library(mosaic)

Note: The Software Investigation starter program will always include a code chunk that loads the mosaic package that includes the functions we need for STA215.

Reading in Data

<DATAFRAME> <-read.csv("<FILEPATH>/<DATASET>.csv",
header=TRUE)

Note: The Software Investigation starter program will always include a code chunk that reads in the data file.

CH 2: Categorical Data

Frequency Table

tally(~ <VARIABLE>, data = <DATAFRAME>, format =
"percent", margin = TRUE)

Note: If you use format = "count" you will get counts instead of percents

Bar Graph using Percent

gf_percents(~ <VARIABLE>, data = <DATAFRAME>)

Bar Graph using Count

gf_bar(~ <VARIABLE>, data = <DATAFRAME>)

Two-Way Table

tally(~ <EXPLANATORY> + <RESPONSE>, data = <DATAFRAME>, margin=TRUE)

Clustered Bar Graph

gf_percents(~ <RESPONSE>, data = <DATAFRAME>, fill =
~<EXPLANATORY>, position = "dodge", denom = ~fill)

CH 3: One Quantitative

Basic Numerical Summaries

favstats(~ <VARIABLE>, data = <DATAFRAME> , na.rm=TRUE)

Percentile

quantile(~ <VARIABLE>, data = <DATAFRAME>, prob = c(<PERCENTILES>), na.rm = TRUE)

Note: Replace percentiles with the values you want separated by commas. For ex., c(0.80,0.90,0.95)

Boxplot

gf_boxplot(~ <VARIABLE>, data = <DATAFRAME>)

Histogram

gf_histogram(~ <VARIABLE>, data = <DATAFRAME>, breaks =
seq(<START, END, JUMP>))

Note: start, end, jump define the bars that make up the histogram. You can leave these out and R will make a default histogram.

Basic Numerical Summaries By-Group

favstats(<RESPONSE> ~ <EXPLANATORY>, data = <DATAFRAME>)

Boxplot By-Group

gf_boxplot(<RESPONSE> ~ <EXPLANATORY>, data =
<DATAFRAME>)

Histogram By-Group

gf_histogram(~ <RESPONSE> | <EXPLANATORY>, data =
<DATAFRAME>, breaks = seq(<START, END, JUMP>))

CH 5: Estimation

Confidence Interval on p

Confidence Interval on µ

t_test(~ <VARIABLE>, data = <DATAFRAME>, conf.level = <CONFIDENCE LEVEL>)

STA 215 R Sheet ggformula How-To

CH 6: Two Quantitative

Scatterplot

gf_point(<RESPONSE> ~ <EXPLANATORY>, data =
<DATAFRAME>)

Linear Correlation

cor(<RESPONSE> ~ <EXPLANATORY>, data = <DATAFRAME>,
use = "complete.obs")

Linear Regression

Model = Im(<RESPONSE> ~ <EXPLANATORY>, data = <DATAFRAME>) summary(Model)

Note: Instead of printing results of the lm() we have saved them to an R object named Model. The summary(Model) prints results.

Scatterplot By-Group

CH 7: Hypothesis Testing Introduction

χ²-Test

Expected Counts

Output = chisq.test(tally(<EXPLANATORY>, ~<RESPONSE> , data = <DATAFRAME>))
Output\$expected

Note: Instead of printing results of the code we have saved them to an R object named Output. The Output\$expected prints out the expected cell counts.

Confidence Interval for the Difference in Two Proportions

prop.test(<RESPONSE> ~ <EXPLANATORY> ,
data = <DATAFRAME>, conf.level = <CONFIDENCE LEVEL>,
success = "<CATEGORY>", correct = FALSE)

Note: For this code to work the explanatory variable must only have two categories.

CH 8: Hypothesis Testing Means

Create Paired Data Difference Variable

<DATAFRAME> = mutate(<DATAFRAME>, Difference = <X1
VARIABLE> - <X2 VARIABLE>)

Paired T-Test and Confidence Interval

t_test(~ Difference, data = <DATAFRAME>, conf.level = <CONFIDENCE LEVEL>)

Independent T-Test and CI

t_test(<RESPONSE> ~ <EXPLANATORY>, data =
<DATAFRAME>, conf.level = <CONFIDENCE LEVEL>)

ANOVA

ANOVA = Im(<RESPONSE> ~ <EXPLANATORY>, data = <DATAFRAME>)
anova(ANOVA)

Note: Instead of printing results of the Im() we have saved the results to an R object named ANOVA. The anova(ANOVA) prints results.