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This article first examines three existing methods of delineating open water fea-
tures, i.e. the normalized difference water index (NDWI), the modified normalized
difference water index (MNDWI) and a method combining the near-infrared
(NIR) band and the maximum likelihood classification. We then propose two
new methods for the fast extraction of water features in remotely sensed imagery.
Our first method is a pixel-based procedure that utilizes indices and band values.
Based on their characteristic spectral reflectance curves, waterbodies are grouped
into three types – clear, green and turbid. We found that the MNDWI is best
suited for identifying clear water. Green water has its maximum reflectance in
Landsat Thematic Mapper (TM) band 4 (NIR band), whereas turbid water has
its maximum reflectance in TM band 5 (mid-infrared band). Our second method
integrates our pixel-based classification with object-based image segmentation.
Two Landsat scenes in Shaanxi Province, China, were used as the primary data
source. Digital elevation models (DEMs) and their derived slope maps were used
as ancillary information. To evaluate the performance of the proposed meth-
ods, extraction results of the three existing methods and our two new methods
were compared and assessed. A manual interpretation was made and used as
reference data. Results suggest that our methods, which consider the diversity
of waterbodies, achieved better accuracy. Our pixel-based method achieved a
producer’s accuracy of 92%, user’s accuracy of 90% and kappa statistics of
0.91. Our integrated method produced a higher producer’s accuracy (95%), but
a lower user’s accuracy (72%) and kappa statistics (0.72), compared with the
pixel-based method. The advantages and limitations of the proposed methods are
discussed.
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Methods for identifying waterbodies 6855

1. Introduction

Reliable information about the spatial distribution of open surface water is critically
important in many scientific disciplines. For example, water information plays a vital
role in the assessment of present and future water resources, climate models and
agriculture suitability (Roberts et al. 1993, Voeroesmarty et al. 1997, Bastiaanssen
et al. 2000). Some researchers also monitored waterbodies over large geographic
areas on a periodic basis for land management and health agencies (Birketta and
Mason 1995, Tran et al. 2010). Lehner and Doell (2004) created a global lakes
and wetlands database that drew upon a variety of existing maps, data and infor-
mation. The database is a combination of the best available sources for lakes and
wetlands on a global scale (1:1 million to 1:3 million resolution). Ma et al. (2011)
constructed a data set of China’s lakes using 11 004 satellite images from the China–
Brazil Earth Resources Satellite (CBERS) charge-coupled device (CCD) camera and
Landsat Thematic Mapper (TM)/Enhanced Thematic Mapper (ETM+). However,
the validation of these data sets requires an enormous amount of field survey and/or
use of aerial photographs. Such approaches are both time- and labour-consuming.

Automated pixel-based methodologies have been used extensively to identify water
features in moderate-resolution satellite imagery since the launch of Landsat-1 in 1972.
Several studies used a single-band method (Work and Gilmer 1976, Rundquist et al.
1987). The single-band method involves selecting a band from a multispectral image.
The near-infrared (NIR) band is usually chosen because NIR is strongly absorbed by
water and is reflected strongly by terrestrial vegetation and dry soil. A threshold value
is then determined subjectively for the band to distinguish between water and land.
However, this method may lead to an overestimation or underestimation of open water
area and the extracted water information is often mixed with shadows (McFeeters
1996).

Band-ratio methods use two bands from a multispectral image and take advantage
of the differences in the spectral response of different land-cover types. In a simple
ratio method, one band is taken from the visible bands such as the green band and
is divided by the NIR band (Boland 1976). As a result, water features in the image
are enhanced, whereas non-water features are suppressed. McFeeters (1996) devel-
oped the normalized difference water index (NDWI) method. The NDWI was derived
using principles similar to those that were used to derive the normalized difference
vegetation index (NDVI) (Townshend and Justice 1986). The NDWI is calculated as
follows: NDWI = (Green – NIR) / (Green + NIR), where Green is a green band such
as Landsat TM band 2 and NIR is an NIR band such as Landsat TM band 4. The
NDWI index is designed to (1) maximize the reflectance of water features in the green
band, (2) minimize the low reflectance of water features in the NIR band and (3) take
advantage of the high reflectance of terrestrial vegetation and soil features in the NIR
band. NDWI ranges from −1 to 1. Water features have positive values, whereas soil
and terrestrial vegetation features have zero or negative values (McFeeters 1996). A
main limitation of the NDWI method is that although the method can eliminate soil
and terrestrial vegetation features in the image, it cannot efficiently suppress the signal
from built-up land. As a result, extracted water features are often mixed with built-up
land noise (Xu 2006).

Xu (2006) proposed a modified NDWI (MNDWI) in which a mid-infrared (MIR)
band was used instead of the NIR band. The MNDWI can be expressed as follows:
MNDWI = (Green – MIR)/(Green + MIR), where Green is a green band such as
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6856 F. Sun et al.

Landsat TM band 2 and MIR is an MIR band such as Landsat TM band 5. MNDWI
ranges from −1 to 1. Compared to the NDWI, water features have greater positive
MNDWI values as they absorb more MIR light than NIR light. Soil, vegetation fea-
tures and built-up land have negative values as they reflect more MIR light than green
light (Jensen 2005, Xu 2006). Xu (2006) applied a threshold value of zero to extract
water features from both NDWI and MNDWI images. He reported that the MNDWI
was more suitable for the enhancement of water features with large amounts of built-
up land in the background than the NDWI because it can efficiently reduce and even
remove built-up land noise as well as terrestrial vegetation and soil features. Using
multitemporal Landsat images, Hui et al. (2008) and Michishita et al. (2012) also used
the NDWI and MNDWI to delineate waterbodies in a study of Poyang Lake, China.

Statistical pattern recognition techniques such as unsupervised and supervised clas-
sification methods have been widely used to extract land-use/land-cover features,
including waterbodies (Sun et al. 2003, Sun 2004, Jensen 2005, Sirikulchayanon
et al. 2008). Sivanpillai and Miller (2010) used the unsupervised Iterative Self-
Organizing Data Analysis Technique (ISODATA) to detect waterbodies with Landsat
and Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER)
imagery. They categorized waterbodies in the Powder River Basin of the USA into
three types – clear, green and turbid. Green water refers to waterbodies in green colour.
The green colour is due to the presence of submerged or floating vegetation. Turbid
water may contain a lot of mud and appears to be brown (Sivanpillai and Miller 2010).
Turbid water may result from a high concentration of suspended sediments or it may
be a river that is shallow. The ISODATA approach is an automated process of group-
ing multi-band spectral response patterns into spectrally pure clusters. However, after
the automated process the analyst must assign actual land-cover features (e.g. water)
to the clusters by using field-collected and other available reference data, and experts
are often required to identify and verify the results.

Multispectral classification based on the maximum likelihood algorithm is one of
the most commonly used methods in the classification of remote-sensing imagery
(McIver and Friedl 2002). Sheng et al. (2008) proposed a method to delineate water
features that combines the NIR and the maximum likelihood classification (MLC).
This method is called the NIR+MLC method in the rest of the article. The NIR band
is used in the NIR+MLC method as water strongly absorbs NIR radiation and has
a lower NIR reflectance compared to terrestrial features (Donald et al. 1987). Sheng
et al. (2008) first applied a low threshold value to the NIR band of Landsat imagery
to segment waterbodies from the background. They then refined the initial segmenta-
tion with MLC using all the available spectral information related to waterbodies. The
MLC method has two major shortcomings. First, it only makes use of spectral infor-
mation of terrain features while ignoring spatial information in the imagery. Second,
the accuracy of multispectral classification depends to a large extent on the statistical
assumption of normally distributed data, which is most often not met by the data used
in image classification.

In addition to spectral features, geometric features (e.g. shape, size), texture and
topographic features can also be used to enhance water information. Li (1995) intro-
duced a shape index method to discriminate among various open water features, such
as lakes, rivers and reservoirs. According to Niu et al. (2009), who compiled the wet-
land map of China including all of the waterbodies, 97.5% of the wetlands were located
in areas with a slope less than 5◦ and 99.2% less than 8◦. This suggests that slope is
a key factor in the identification of waterbodies. Object-based classification has been
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Methods for identifying waterbodies 6857

proposed as a means of incorporating such spatial information into the classification
procedure (Wang et al. 2004).

Object-based image analysis (OBIA) or geospatial OBIA (GEOBIA), which emu-
lates human interpreters’ abilities, has been considered an automatic interpretation
method since the late 1990s (Schiewe et al. 2001, Blaschke 2003). The application of
the OBIA has increased sharply over the last several years as greater emphasis has
been placed on deriving image objects with increasing spatial resolutions (Blaschke
et al. 2008, Blaschke 2010). Classification units change from a single pixel in per-
pixel analysis to image objects or objects that are made up of several pixels in OBIA.
GEOBIA assumes that image objects provide a more appropriate scale to map envi-
ronmental features. Note that objects can not only be derived from image data but
also be developed from any spatially distributed variable, such as elevation and slope
(Jensen 2005).

The GEOBIA approach involves two main steps: segmentation and classification
(Wang et al. 2004). Image segmentation incorporates both spatial and spectral infor-
mation to group similar image pixels into image objects or geo-objects with shape
and spectral homogeneity (Benz 2001). Baatz and Schape (2000) developed one of
the most promising approaches to remote-sensing image segmentation (Blaschke and
Strobl 2001). Image objects can then be classified and related to real landscape features
using object-based classification techniques (Blaschke et al. 2000, Hay et al. 2001, Yu
et al. 2006). Frohn et al. (2005) used shape measures of compactness and smoothness
in the segmentation process to distinguish thaw lakes from other water objects such
as rivers and streams. Van der Werff and van der Meer (2008) took into account the
shape measures of image objects such as compactness, roundness and convexity to
classify rivers, lakes and reservoirs in Landsat imagery.

It is important to note that accuracy assessment strategies of the OBIA approach are
different from the traditional pixel-based image analysis. Albrecht and his associates
(Albrecht 2010, Albrecht et al. 2010) investigated the deviation of object boundaries
between an OBIA land-use/land-cover classification and a reference data set using an
object comparison approach, i.e. Object Fate Analysis (OFA) (Schoepfer et al. 2008,
Tiede et al. 2010). Moreover, Grenier et al. (2008) proposed a method for calculat-
ing sampling size based on objects by considering the inherent variability within each
wetland class.

A major advantage of GEOBIA is its capability to define criteria for image objects
at set scales using spectral features, as well as texture, shape, context relationships
and ancillary data of image objects at different spatial resolutions (Bock et al.
2005). Although the full advantage of the OBIA approach can be deployed with
high-resolution image data, OBIA methods have also been utilized for medium- or
coarse-resolution imagery, e.g. Landsat images (Dorren et al. 2003, Geneletti and
Gorte 2003, Duveiller et al. 2008).

The objectives of this study are to (1) examine three existing methods of delineating
open surface water, i.e. NDWI, MNDWI and NIR+MLC, (2) propose two new meth-
ods to extract water features from Landsat imagery and (3) compare and evaluate the
performance of the existing methods and the proposed methods. Our first method is a
pixel-based procedure that utilizes a series of indices and band values and is called the
pixel-based method in the rest of the article. Our second method integrates the pixel-
based classification and object-based image segmentation, which we call the integrated
method. In this study, we adopted the three water types (clear, green and turbid) used
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6858 F. Sun et al.

in Sivanpillai and Miller (2010). Green water may contain submerged or floating vege-
tation. Turbid water may contain a lot of mud or it may be heavily polluted. It should
be noted that the primary purpose of our methods is to identify water-covered pixels
rather than to differentiate different water types.

2. Study area and data preparation

2.1 Study area

The study area covers a part of Shaanxi Province in northwestern China
(figure 1). The bounding latitudes of the study area are 33◦ 37′ N and 35◦ 35′
N and its bounding longitudes are 107◦ 35′ E and 111◦ 30′ E. This research is a
pilot study of a global land-cover mapping project currently conducted in China.
The global land-cover mapping project is called the ‘High Resolution Global Land
Cover Mapping Project for Global Environmental Change Studies and Earth Systems
Simulation’. Shaanxi Province was selected as an experiment site due to its com-
plex ecological characteristics. Shaanxi Province straddles across five ecological zones:
Ordos Plateau steppe, Central China Loess plateau mixed forests, Huang He Plain
mixed forests, Qin Ling Mountains deciduous forests and Daba Mountains evergreen
forests (Kuang 2011). Landsat TM images were chosen as the experiment data.

Several mountains including Lishan, Huashan and Taibaishan run along the north-
ern and southern edges of the study area, resulting in higher elevations in the north
and the south and lower elevations in the middle. Taibaishan is the highest mountain
in the study area, with its peak reaching about 3745 m. The average elevation of the
central part is about 600 m. These mountains are partly covered with deciduous trees
and coniferous forests. The mineral resources near the mountains are mainly coal,
molybdenum and gold. A few opencast coalfields are scattered around, and the coal is
exposed in the study area.

The study area features a temperate, semi-arid climate. The precipitation period of
Shaanxi Province is between June and August. The rainfall during this period accounts
for more than 40% of its annual precipitation. The influence of the terrains on precip-
itation is noticeable. The average annual precipitation is about 400–600 mm in the
north, whereas it is about 500–700 mm in the south. Numerous natural and human-
made waterbodies are found in the study area, including part of the Yellow River and
its tributaries. The Yellow River is the second longest river in China. The river and
many of its tributaries are very muddy and have a heavy sediment load. It has been
estimated that nearly 90% of the sediment of the Yellow River comes from the Loess
Plateau, composed of fine-grained silt (Ren and Shi 1986). The soil of the region has
been called the ‘most highly erodible soil on earth’ (Laflen 2000). The sizes of the
waterbodies in the study area vary from a single pixel to hundreds of thousands of
pixels in a Landsat TM image. Other land-cover features include grassland, bare soil,
pasture, farmland and urban areas.

2.2 Data preparation

Landsat images covering the entire Shaanxi Province were downloaded from the US
Geological Survey (USGS) website (http://www.usgs.gov). Two Landsat 5 TM scenes
were selected for this study and the path/row numbers are 126/36 and 127/36, respec-
tively. Each of the two selected images has its unique features in terms of waterbodies.
In the 126/36 scene, most of the waterbodies are in the natural environment because
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6860 F. Sun et al.

this is mainly a mountainous area. On the other hand, the 127/36 scene contains sev-
eral large and small urbanized areas such as Xian, Tongchuan, Weinan, Sanmenxia
and Yuncheng. Therefore, waterbodies in the 127/36 scene have been influenced by
varying degrees of anthropogenic activities. Anthropogenic activities often result in
increasing eutrophication and the explosive growth of nuisance algae (Anderson and
Garrison 1997). The urbanized areas have relatively low elevations. For example, the
large metropolitan area of Xian is situated at about 400 m. Furthermore, waterbodies
in the 127/36 scene appear to have a heavy sediment load carried down from the Loess
Plateau. Phosphate fertilizer and nitrogen phosphorus compound fertilizer have been
widely used for agriculture in the region, resulting in heavy pollution of waterbodies.
Due to the weathering of bedrocks and soil erosion, some of the waterbodies in this
region also contain considerable amounts of sands and soils.

The distinct features of the waterbodies in the two selected scenes provided a good
basis for testing the robustness of the methods presented in this article. The 126/36
scene was acquired on 2 June 2007 and the 127/36 scene was acquired on 29 June 2009.
These two images were selected because they contain minimal cloud cover and sensor
noise. Another advantage of using images acquired in June is that during this month
rivers and lakes in the study area are filled with more water and, therefore, there are
more continuous water features in the imagery. This helps reduce the amount of mixed
pixels around water features compared with the images acquired in drier months.

Six TM spectral bands, i.e. bands 1, 2, 3, 4, 5 and 7, were used in this research.
TM band 6 was excluded due to its coarse spatial resolution. The images are in the
Universal Transverse Mercator (UTM) Zone 49 N, World Geodetic System of 1984
(WGS 84). Digital elevation models (DEMs) from the Shuttle Radar Topography
Mission (SRTM) corresponding to the two Landsat scenes were also used. The DEM
data were downloaded from the SRTM 90 m Database (http://srtm.csi.cgiar.org). The
90 m spatial resolution DEM data were resampled to 30 m using a bilinear method to
match the spatial resolution of Landsat images. To check the suitability of the SRTM
data, we calculated statistics for the data and found that there was no exceptional
value. The minimum value is 255 m and the maximum value is 3745 m. The SRTM
elevation values represent the topography of the study area well. Using the state 1:50
000 DEM and 1:250 000 DEM as references, Zhan (2008) evaluated the SRTM data
of Shaanxi Province and reported that the accuracy of surface parameters such as
slope and aspect based on SRTM DEM is always higher than that based on the 1:250
000 DEM but lower than that based on the 1:50 000 DEM. The maximum error of
the derived slope values from the SRTM DEM is larger (about 8◦) in steep mountain
regions than in flat areas (about 3◦) in the entire Shaanxi Province. Waterbodies are
generally located in flat regions which have low slope values. Therefore, it is reasonable
to use the SRTM data to refine our result.

Atmospheric and topographic correction of the selected images was carried out
using Atmospheric and Topographic Correction (ATCOR) software. ATCOR is an
add-on module to ERDAS IMAGINE that eliminates atmospheric and illumina-
tion effects in imagery (ERDAS Inc. 2010). Atmospheric correction involves two
major steps: parameter estimation and surface reflectance retrieval (Liang et al. 2001).
ATCOR is a large database containing the results of radiative transfer calculations
based on the Moderate Resolution Atmospheric Transmission (MODTRAN) code
(Berk et al. 1998, 2003). MODTRAN is a radiative transfer program designed to
model atmospheric propagation of electromagnetic radiation for the 0.2–100 µm spec-
tral range. ATCOR performs atmospheric correction for image data by inverting
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Methods for identifying waterbodies 6861

results of MODTRAN calculations compiled in a database. The look-up tables in
the database consist of the following parameters: standard atmospheres (altitude pro-
file of pressure, air temperature, water vapour content, ozone concentration), aerosol
types, a range of aerosol concentrations, a range of ground elevations and solar zenith
angles (ERDAS Inc. 2011).

3. Methods

3.1 Existing methods

To evaluate the performance of different approaches, we first adopted three exist-
ing methods, i.e. the NDWI (McFeeters 1996), MNDWI (Xu 2006) and NIR+MLC
(Sheng et al. 2008), to extract water features from the two Landsat images. The NDWI
was implemented by using TM band 2 (green) and TM band 4 (NIR). TM band
2 (green) and TM band 5 (MIR) were used in the implementation of the MNDWI
method. A threshold value of zero was applied to the NDWI and MNDWI images to
separate water features from the background.

The NIR+MLC method proposed by Sheng et al. (2008) was implemented in two
steps. First, a low threshold value of 0.25 was applied to the NIR band to separate
waterbodies from the background. Pixels having values lower than the threshold are
considered water pixels; those whose values are greater than or equal to the threshold
are considered background pixels. To avoid underestimation of surface water in the
final results, we relaxed the threshold and increased its value to 0.5. As a result, some
other land-cover types with low NIR values were also classified as water pixels. The
subsequent MLC aimed to distinguish between water and other land-cover types.

Second, MLC was applied to all the spectral bands, and a map of open surface
water was obtained for each of the Landsat scenes. As we are only interested in water
features, two classes are necessary, i.e. water and non-water/others. Training samples
of about 500 water pixels and 1000 non-water pixels were selected in each Landsat
scene. A larger number of non-water pixels were used because the area of non-water
features is larger than that of the waterbodies in both scenes. Furthermore, a team of
China’s global land-cover mapping project, mentioned above, carried out field work in
the study area in June 2010. One of the main purposes of the field work was to collect
training samples for different land-cover types. Our field work shows that clear, green
and turbid waterbodies are all present in the 127/36 scene, whereas the 126/36 scene
mainly contains clear and green water features. It should be noted that the selected
training samples were not differentiated between clear, green and turbid water. In other
words, all the three water types were lumped together as water. A detailed description
of clear, green and turbid water is provided in the following section. Experience and
knowledge of the study area were utilized in the selection of training samples. For
example, particular attention was paid to the selection of certain non-water features
such as shadows and coalfields as they tend to have similar spectral reflectance to
water.

3.2 New pixel-based method

This method is a pixel-based procedure that utilizes indices and band values. In view of
the diversity of waterbodies in the study area, we grouped water into three types – clear,
green and turbid. We found that these three types of water have distinctive spectral
reflectance characteristics. The reflectance of clear water decreases as the wavelength
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6862 F. Sun et al.

Imagery after atmospheric correction

Y
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Green water

NDVI < threshold_NDVI Band 5 is the maximum and band 5 < threshold_b5

Turbid water Others
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N

N
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Others

Elevation+slope

Waterbodies

Clear water

Band 2 < threshold b2

MNDWI > 0

Band 4 is the maximum and band 4 < threshold_b4

Figure 2. Flow chart of the new pixel-based method for extracting clear, green and turbid
waterbodies.
Note: Threshold_b2 represents a threshold value in TM band 2, threshold_b4 represents a
threshold value in TM band 4, threshold_b5 represents a threshold value in TM band 5 and
threshold_NDVI represents a threshold value of NDVI.

increases. Green water has its maximum reflectance in TM band 4, whereas turbid
water has its maximum reflectance in TM band 5. Therefore, these three types of water
can be identified based on their unique spectral reflectance curves. The main steps
in the proposed method are displayed in figure 2. As figure 2 illustrates, there are
three approaches in the flowchart for identifying the three water types. After these
water types have been identified, elevation and slope data are used to exclude certain
non-water features such as easily confused coalfields and shadows. Details about the
extraction of each water type are discussed in the following sections.

3.2.1 Extraction of clear water. A significant characteristic of clear water is that its
spectral reflectance decreases as the wavelength increases. This means that, for clear
water features, the difference between the values of TM bands 2 and 5 is greater
than the difference between the values of TM bands 2 and 4 (figure 3). In other
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Figure 3. Average spectral reflectance patterns of clear water, regular buildings and buildings
with special rooftops.
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Methods for identifying waterbodies 6863

words, clear water features have greater positive MNDWI values than their NDWI
values. Therefore, the MNDWI was chosen to extract clear water features in the two
Landsat images. A threshold value of zero was used to separate clear water from the
background.

Another reason why the MNDWI was chosen is that this method is more effective
in eliminating built-up land noise (Xu 2006). As can be seen in figure 3, it is fairly
easy to distinguish clear water from regular buildings as these buildings have nega-
tive MNDWI values. However, we observed that some confusion occurred between
clear water and those buildings with special rooftops that are made of metals or are
painted in particular colours. This confusion was caused by the fact that the buildings
with special rooftops also have positive MNDWI values. We further observed that the
spectral reflectance of clear water is usually lower in band 2 (about 7.5% lower) than
that of the buildings with special rooftops. Therefore, in addition to the MNDWI,
we applied a low threshold to TM band 2 (green band) to exclude those buildings. It
should be noted that each spectral reflectance curve in figure 3, clear water, for exam-
ple, represents the average spectral reflectance of its corresponding land-cover feature.
The locations of the sample sites representing each land-cover type are marked in
figure 1. Similarly, figures 4 and 5 discussed in the following two sections depict the

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

Band 1 Band 2 Band 3 Band 4 Band 5 Band 7

R
ef

le
ct

an
ce

Clear water

Green water

Paddy fields

Vegetation

Figure 4. Average spectral reflectance patterns of clear water, green water, terrestrial vegeta-
tion and paddy fields.
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6864 F. Sun et al.

mean spectral reflectance of their corresponding land-cover features. Sample locations
for these land-cover types are also shown in figure 1.

3.2.2 Extraction of green water. Green water differs from clear water and turbid
water in that its maximum spectral reflectance value occurs in the NIR band (TM band
4). Therefore, TM band 4 is chosen to distinguish green water from other water fea-
tures. A major challenge to the identification of green water is the similarity between
green water and terrestrial vegetation in terms of their spectral reflectance character-
istics. Both green water and terrestrial vegetation absorb much light in the red band
(TM band 3) and reflect strongly in the NIR band (TM band 4) due to the presence
of chlorophyll (figure 4). A noteworthy difference between green water and terrestrial
vegetation is that green water has a much lower reflectance value in the NIR band.
Therefore, we used the following two conditions to extract green water pixels: (1) their
maximum values occur in TM band 4 and (2) their pixel values in TM band 4 are
smaller than a certain threshold.

Another problem we encountered was that the paddy fields in the study area also
have low reflectance in the NIR band (figure 4). To overcome this problem, the NDVI
was further used to separate green water from paddy fields. Paddy fields have higher
NDVI values than green water. The NDVI is calculated as follows: NDVI = (NIR –
RED)/(NIR + RED), where NIR is TM band 4 and RED is TM band 3.

3.2.3 Extraction of turbid water. Turbid water differs from clear water and green
water in that its maximum spectral reflectance value occurs in TM band 5 (MIR band).
However, bare soil also has its highest spectral reflectance in TM band 5 (figure 5).
Nevertheless, the spectral reflectance of turbid water in TM band 5 is much lower
than that of bare soil. Therefore, turbid water can be identified using the following
conditions: (1) pixels whose highest reflectance is in TM band 5 and (2) pixels whose
reflectance values in TM band 5 are lower than a certain threshold.

3.2.4 Use of DEM data. Using the above three steps, open surface water including
clear, green and turbid was extracted. However, shadows in mountainous areas were
often mixed with water features due to their similar spectral responses. A good strategy
for dealing with this problem is to incorporate ancillary DEM data. We first generated
a slope image from the DEM data for each of the two Landsat scenes. Based on the
knowledge that waterbodies are located in areas with low elevations and small slopes,
we then set-up elevation and slope thresholds to remove shadows in mountainous
areas.

Pixel-based classification makes use of the spectral response of every single pixel in
the image. This approach often results in ‘salt-and-pepper’ effects and weakly defined
inter-region boundaries on the classified map (Solaiman et al. 1998, Sun et al. 2003).
For instance, the inner portion of the extracted lakes may contain non-water pixels.
To reduce such ‘salt-and-pepper’ noise, we experimented with several threshold val-
ues. However, this approach may lead to an overestimation or underestimation of
water information. As such, we proposed a second method that incorporates image
segmentation procedure to improve classification results.
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Methods for identifying waterbodies 6865

3.3 Integration of pixel-based method and object-based segmentation

Our second method begins with the segmentation of the two Landsat images using an
object-based segmentation procedure. The segmentation was performed using eCog-
nition software from Trimble (http://www.ecognition.com). Specifically, the multires-
olution segmentation algorithm was used. It is a bottom-up segmentation algorithm
in which pixels or image objects are merged consecutively based on a pairwise region
merging technique (Definiens 2009). This algorithm locally minimizes the average het-
erogeneity of image objects for a given resolution of image objects and maximizes their
respective homogeneity (Definiens 2009).

The algorithm requires three user-defined parameters: (1) scale parameter, (2) shape
factor and (3) compactness. Scale parameter is a threshold of heterogeneity that con-
trols the degree of heterogeneity within an image object. A higher scale parameter
leads to larger and less homogeneous objects, and vice versa. Heterogeneity is defined
in terms of two factors: spectral (colour) values and shape. These two factors can be
interactively weighted by the user: the higher the shape factor, the lower the influence
of spectral values in the segmentation. The shape factor is further described by two
landscape ecology metrics: compactness and smoothness. These two metrics can also
be weighted by the user: the higher the compactness value, the lower the smoothness
value. Platt and Rapoza (2008) reported that there is no effective method to select opti-
mal parameters for image segmentation. In this study, we aimed to generate a small
size of image objects so that small water features would not be lost during the integra-
tion process described below. We performed a lot of trial-and-error attempts with the
three user-defined parameters until the resulting objects closely corresponded to the
boundaries of landscape features.

The image objects obtained from the above segmentation process were then overlaid
with the pixel-based classification results. An algorithm integrating the pixel-based
classification and the object-based segmentation was developed. The algorithm per-
formed the following operations within each image object that resulted from the image
segmentation procedure.

1. Calculating the percentage of water pixels from the pixel-based classification
results within each image object.

2. Defining a percentage threshold, such as 20%, 15% and 10%, which was then
used to compare with the percentage of water pixels within each image object.

3. Making comparisons and assigning new values to the final output image using
the following criteria: if the percentage of water pixels was greater than a certain
threshold (e.g. 10%), then the image object was assigned to the ‘water’ class.
Otherwise, the object was assigned to the ‘non-water’ or ‘others’ class.

4. Results and discussion

Using the five methods discussed above, the two Landsat scenes were classified into
two classes: water and non-water. To evaluate the performance of these methods,
pixel-by-pixel comparison was made between each automatic extraction result and
a reference data set, which was derived from visual image interpretation. The two
Landsat images were visually interpreted by one person and checked by another, and
both were familiar with the study area. The interpretation was carried out according
to the spectral, spatial and contextual information and the DEM data and its derived
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6866 F. Sun et al.

Table 1. Accuracy assessment of waterbodies in the two entire Landsat scenes using the five
methods, i.e. NDWI, MNDWI, NIR+MLC, new pixel-based method and new integrated

method.

NDWI MNDWI MLC+NIR

New
pixel-based

method

New
integrated

method

126/36 Producer’s accuracy (%) 36.29 86.33 91.34 92.22 95.11
User’s accuracy (%) 98 95.31 89.28 90.61 72.01
Overall accuracy (%) 99.55 99.87 99.86 99.88 99.71
Overall kappa 0.5279 0.9054 0.9023 0.9135 0.8182
Kappa (water) 0.9799 0.9527 0.8921 0.9054 0.7181

127/36 Producer’s accuracy (%) 82.01 29.85 79.17 74.46 85.51
User’s accuracy (%) 57.51 68.54 73.99 83.52 60.2
Overall accuracy (%) 99.80 99.79 99.88 99.90 99.82
Overall kappa 0.6751 0.4150 0.7643 0.7868 0.7057
Kappa (water) 0.5740 0.6846 0.7392 0.8348 0.6010

slope data. Google Earth was also used to assist in the visual interpretation of the
images. Producer’s accuracy, user’s accuracy and kappa statistics were calculated for
each of the five methods. As the area of the non-water class, which is considered the
background, is much larger than the water, the overall accuracies of these methods
are all greater than 99% and have only minor differences. Table 1 summarizes classifi-
cation accuracy and kappa statistics for waterbodies in the two images using the five
methods.

For the purpose of comparison, the three types of water (clear, green, turbid)
extracted using the pixel-based method were combined into just one class, i.e. water.
Figure 6(a) shows the result from visual image interpretation. Figures 6(b)–(f ) dis-
play the classification results from the five methods for a subset of the Landsat 126/36
scene, which is marked in figure 1. The subset consists of 1876 × 1102 pixels and its
bounding latitudes are 34◦ 19′ N and 34◦ 27′ N and bounding longitudes 108◦ 49′ E
and 109◦ 3′ E.

4.1 NDWI and MNDWI

As can be seen from table 1, overall the NDWI worked better for the 127/36 scene,
whereas the MNDWI worked better for the 126/36 scene. The difference in the per-
formance of the NDWI and MNDWI can be attributed to the characteristics of land
cover/land use in general and the waterbodies in particular in the two images. The
127/36 scene contains several cities and, therefore, is characterized by fragmented
small patches of various urban land-cover types. As such, there are lots of mixed pix-
els in the scene due to the 30 m resolution of the Landsat imagery. Many of the mixed
pixels in this scene contain a built-up land component.

Waterbodies in the 127/36 scene are relatively turbid as they are strongly affected by
a high level of urbanization and/or sediment concentration. The NDWI can extract
those water pixels whose TM band 2 (green) values are higher than their band 4 (NIR)
values. Both clear and turbid water meet this criterion and, therefore, the NDWI
extracted most turbid and clear water in the 127/36 scene. The NDWI achieved a
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Methods for identifying waterbodies 6867
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Water Non-water

Figure 6. Results for a subset of the 126/36 scene using different methods: (a) visual image
interpretation, (b) NDWI, (c) MNDWI, (d) NIR+MLC, (e) new pixel-based method and (f )
new integrated method.

producer’s accuracy of 82.0%, a user’s accuracy of 57.5% and a kappa statistics of
0.57. The MNDWI can extract those water pixels whose TM band 2 (green) values are
higher than TM band 5 (MIR) values. The MNDWI was able to identify a small num-
ber of clear waterbodies in this scene, but it could not extract most of the turbid water
as the turbid water has its highest reflectance in band 5 (MIR) (figure 5). The MNDWI
only achieved a user’s accuracy of 68.5%, a low producer’s accuracy of 29.8% and a
kappa statistics of 0.68. Although the kappa statistics of water that resulted from the
NDWI method is slightly higher than that from the MNDWI, overall kappa statistics
of the NDWI is much higher than that of the MNDWI, i.e. 0.68 vs 0.42. We observed
that along the edges of water features such as rivers, lakes and channels, many pix-
els contain both turbid water and built-up land. It is likely that the band 5 values of
these mixed pixels are greater than their band 2 values due to the high band 5 value of
the built-up land (figure 3). As a result, these mixed pixels of water and built-up land
cannot be extracted using the MNDWI.
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6868 F. Sun et al.

The 126/36 scene covers a mountainous region where elevations are higher and
there is relatively less human activity. Because of high elevations of the mountains,
sediment concentration in waterbodies is much lower compared with that at lower
elevations. Vegetation often grows near or along the edges of water features in this
scene. Therefore, the water features in this scene are mostly clear and green water. The
MNDWI performed well for this scene, and the producer’s accuracy, user’s accuracy
and kappa statistics were 86.3%, 95.3% and 0.95, respectively. The NDWI achieved a
user’s accuracy of 98%, but a lower producer’s accuracy of 36.3% and a kappa statis-
tics of 0.98. The overall kappa statistics from the MNDWI is much higher than that
from the NDWI, i.e. 0.91 vs 0.53. We observed that the 126/36 scene contains many
mixed pixels, and many of the mixed pixels contain both clear water and vegetation.
As a result, the spectral reflectance of these mixed pixels is quite similar to green water.
It is likely that band 4 values of these mixed pixels of clear water and vegetation are
greater than their band 2 values. Thus, such water–vegetation mixed pixels cannot be
extracted using the NDWI.

4.2 NIR+MLC

The NIR+MLC method achieved a better result for the 126/36 scene than for the
127/36 scene (table 1). The producer’s accuracies for the 126/36 and 127/36 scenes
are 91.3% and 79.2% respectively, representing about 11% difference. Overall kappa
statistics and the kappa statistics of water are both higher for the 126/36 scene than
for the 127/36 scene, i.e. 0.90 vs 0.76 and 0.89 vs 0.74. There are several factors that
may explain this difference such as water type, size and depth. As discussed above, the
126/36 scene consists mainly of clear and green water and is rather homogeneous. The
high elevation of this scene leads to less sediment concentration in the waterbodies. On
the other hand, the 127/36 scene contains all types of water. Although this research
classified water into three types (clear, green, turbid), it is quite possible that certain
water features lie somewhere between these three types in terms of their colours. This
means that our training samples may not have included all the water types present in
the study area, resulting in a lower classification accuracy.

Compared to the 127/36 scene, more natural waterbodies are found in the 126/36
scene, and the size of waterbodies is generally larger. As such, more water-mixed pixels
exist in the 127/36 scene, which degraded the classification accuracy of the scene. The
term water-mixed pixels is used here to refer to pixels that spatially cover both water
and non-water features. In fact, the total radiance of a waterbody recorded by a remote
sensor is a function of water-surface radiance, subsurface volumetric radiance and
radiance from the bottom of the waterbody (Bukata et al. 1995). Waterbodies in the
127/36 scene are rather shallow. Therefore, if the waterbody itself is not deep enough,
the sensor can get spectral responses from the bottom of the waterbody. This may
further explain the lower classification accuracy for the 127/36 scene compared to the
126/36 scene.

4.3 New pixel-based method

Our new pixel-based method requires selecting threshold values to separate water
features from other land-cover types. The classification results from the pixel-based
method are displayed in figure 6(e). These results are obtained using the following
thresholds: (1) a TM band 2 value of less than 0.18 was used to extract clear water
pixels, (2) a TM band 4 value of smaller than 0.2 and a NDVI value of less than 0.3
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Methods for identifying waterbodies 6869

were used to identify green water, (3) a TM band 5 value of less than 0.15 was used to
obtain turbid water and (4) slopes less than 20◦ and elevations lower than 1000 m were
used to remove shadows in mountainous areas. These threshold values were chosen on
the basis of experiments and visual comparisons of classification results.

Overall, the pixel-based method performed well for the two Landsat images. The
method achieved a better result for the 126/36 scene than for the 127/36 scene
(table 1). Compared with the three existing methods, our pixel-based method yielded
a higher producer’s accuracy for the 126/36 scene. Specifically, the producer’s accu-
racy of the pixel-based method is 55% higher than that of the NDWI and about 5.9%
higher than that of the MNDWI. The method also represents an improvement over the
NIR+MLC. In fact, the pixel-based method is the only procedure whose producer’s
accuracy and user’s accuracy are higher than 90% for the 126/36 scene. Furthermore,
the overall kappa statistics and the kappa statistics of water of this method are greater
than 0.90 for the 126/36 scene. This shows that the pixel-based method is better
able to identify clear and green waterbodies than the other methods tested in this
study.

For the 127/36 scene, the pixel-based method achieved the highest overall kappa
statistics (0.79), water kappa statistics (0.83) and user’s accuracy (83.5%) among all
the five methods. For this scene, the producer’s accuracy of the pixel-based method
(74.4%) is about 44% higher than that of the MNDWI (29.8%). However, it is slightly
lower than the NDWI and the MLC+NIR by about 7.5% and 4.7%, respectively.
These results suggest that the pixel-based method does not perform as well as the
NDWI and MLC+NIR when a large number of turbid water pixels and water and
built-up land-mixed pixels exist in the image.

4.4 Integration of pixel-based method and object-based segmentation

Figure 6(f ) shows the classification result from our integrated method. The segmenta-
tion was done using a scale parameter of 15, a shape factor of 0.1 and a compactness of
0.5. A percentage threshold of 10% was then applied in the algorithm to integrate the
pixel-based classification and the image objects. A significant improvement achieved
with the integrated method is that the ‘salt-and-pepper’ noise disappeared and areas
of water features became more homogeneous. Compared to the pixel-based classi-
fication, the producer’s accuracy of the integrated method increased by about 11%
(from 74% to 85%) for the 127/36 scene and 3% (from 92% to 95%) for the 126/36
scene (table 1). Among the five methods, the integrated method achieved the highest
producer’s accuracy for both scenes, i.e. 95% for the 126/36 scene and 85.8% for the
127/36 scene.

As can be seen from table 1, the user’s accuracy, the overall kappa statistics and the
kappa statistics of water of the integrated method were lower than those of the pixel-
based method for both scenes. The overestimation of water features in the integration
process is mainly responsible for the lower accuracy of the integrated method. As dis-
cussed above, a considerable number of pixels in the 127/36 scene contain both water
and built-up land, and many pixels in the 126/36 scene contain both water and vege-
tation. Some of these mixed pixels, especially those along the edges of water features
such as rivers and lakes, have been reclassified as water pixels in the process of integrat-
ing the results from image segmentation and the pixel-based method. For instance, if
a water–vegetation mixed pixel is part of an image object that was identified as water,
then that mixed pixel would be reclassified as a water pixel. A closer examination of the
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6870 F. Sun et al.

classification results further suggests that the integrated method misclassified certain
features such as shadows and coalfields as waterbodies in the study area.

As discussed in the Introduction, Albrecht and his associates (Albrecht 2010,
Albrecht et al. 2010) developed OBIA-specific accuracy assessment strategies. For
example, spatial uncertainty in object delineation was measured by an epsilon error
band with OFA (Zhang and Goodchild 2002). Different accuracy may be obtained if
such a method was used.

5. Conclusions

Information and knowledge of the Earth’s surface water is increasingly needed by
both practitioners and scientists in water resource management and global change
research. This study tested two proposed methods as well as three existing methods for
the extraction of water features in remotely sensed data. Results from the NDWI and
MNDWI methods suggest that the use of a single index cannot fully achieve the goal
of accurately delineating open surface water. The NDWI and MNDWI complement
each other and, therefore, should be used to extract different types of water features.

Compared with the NDWI and MNDWI, the MLC+NIR method achieved higher
accuracies, but it was a time-consuming procedure. The method requires the analyst
to have considerable experience in image processing and good knowledge of the study
area. To achieve satisfactory classification results, it is often necessary to adjust the
types and numbers of training samples. Therefore, the stability of this method is poor.

The two proposed new methods utilize more spectral information in the image than
do the NDWI or MNDWI methods. The new methods are faster to implement than
the NIR+MLC method as they do not require training samples. Overall, the pro-
posed methods performed well for the two Landsat images used in this study. They
demonstrated improvements of varying degrees over the existing methods. Despite
these encouraging results, more work clearly is needed to further improve the robust-
ness of the proposed methods. For example, the two proposed methods as well as the
three existing methods require the choosing of certain threshold values to extract water
features in the image. The thresholds used in this study were determined based on the
analyst’s experience and visual comparisons of classification results. It is clear that a
more robust approach is needed to objectively determine optimum thresholds for the
proposed methods in future research. The pixel-based method can be applied to other
remote-sensing imagery such as Landsat images in a different region. This is because
the pixel-based method is based on the physical principle of electromagnetic radia-
tion of water features. Atmospheric correction must be performed before applying the
method. The threshold values used in this study may be changed considering such fac-
tors as the variation of solar zenith angle and atmospheric condition in a particular
region.

Another direction in which the present research can be expanded is to develop a
more comprehensive system for categorizing water features in remotely sensed data.
In this study, we classified the waterbodies in the study area into three (colour) types,
i.e. clear, green and turbid. This research has revealed that the strategy of group-
ing waterbodies into different types is necessary and effective. Open surface water
varies considerably in terms of its morphological and biochemical characteristics as
well as size and location. Categorization of open surface water for image classification
purposes is an issue that deserves further research.
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Our results suggest that shadows, coalfields and dry valleys are often misclassified
as waterbodies due to their similar spectral reflectance characteristics. In this study, we
utilized ancillary DEM and slope information to remove the noise caused by shadows
in mountainous areas. This strategy proves effective in improving classification results.
It seems desirable that future research should include other ancillary information to
deal with such sources of noise as coalfields and dry valleys.

This research has also revealed that water features are often mixed with other
land-cover/land-use types such as built-up land and vegetation in remotely sensed
images. The proposed methods cannot effectively deal with the mixed pixel problem.
Advanced classification algorithms, such as linear spectral unmixing, fuzzy classifica-
tion logic and the support vector machine, may be used in future research to improve
classification accuracies. To obtain more accurate classification results, satellite images
that have both high spatial and spectral resolution may also be needed.

It should be noted that the object-based segmentation process generates not only
homogeneous image objects but also several attributes for each image object. These
attributes include area, length, length width ratio, roundness, elliptic fit and compact-
ness. Such shape measures as well as spectral, contextual and other information may
be incorporated in an object-based procedure to improve classification accuracies. To
what extent the use of such object-based classification techniques can more effectively
extract water features is another issue that requires further research. Furthermore, the
segmentation parameters we used may not be optimal. Dragut et al. (2010) presented
a technique for estimating the scale parameter for multiresolution image segmenta-
tion of remotely sensed data with eCogniton. The tool, called Estimation of Scale
Parameter (ESP), enables the selection of appropriate scales objectively for image
segmentation (Dragut et al. 2010). Future research may also consider using such a
technique.
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