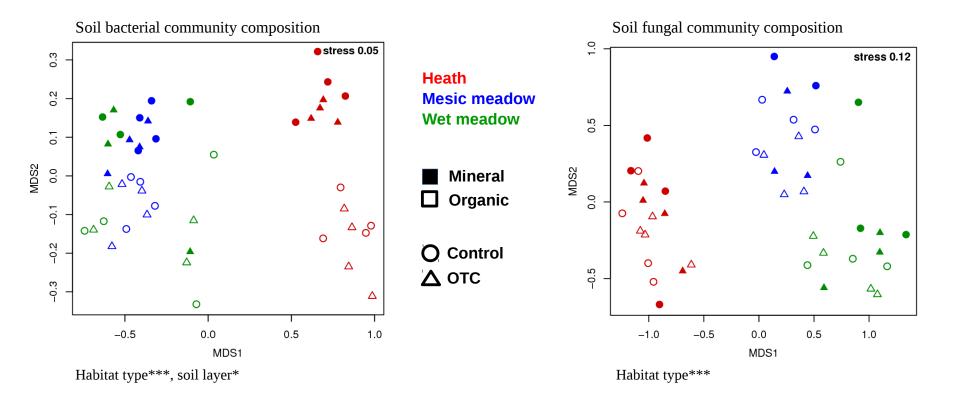


Different responses of soil microbial communities to long-term experimental warming in northern Sweden

<u>Jaanis Juhanson</u>, Karina E. Clemmensen, Germán Bonilla-Rosso, Ulf Molau, Anders Michelsen, Juha Alatalo, Sara Hallin

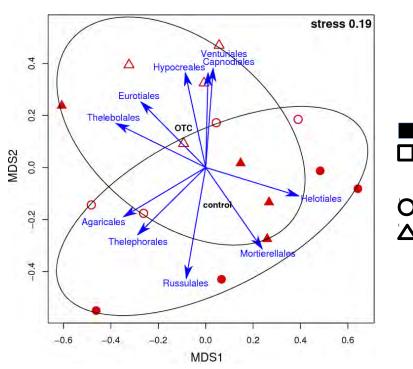
	Heath	Mesic Meadow	Wet Meadow
Ground	Acid glacial moraine ridge	Calcareous bedrock	
Vegetation	Sparse; lichens and vascular plants (shrubs)	Continuous; mosses and vascular plants (shrubs, sedges)	
Moisture	Dry	Mesic	Mesic/Wet
Nitrogen and carbon content	Very low N content, high C/N	Medium N content, medium/low C/N	
pН	acidic	neutral	

Latnjajaure Field Station

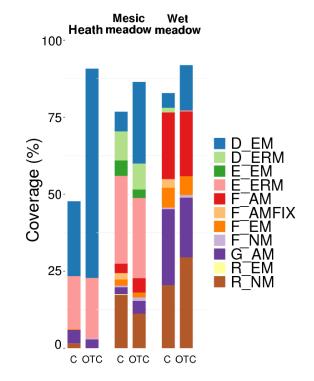


- Warming effect on the soil microbial community composition
 - HTS of bacteria (16S rRNA) and fungi (ITS)

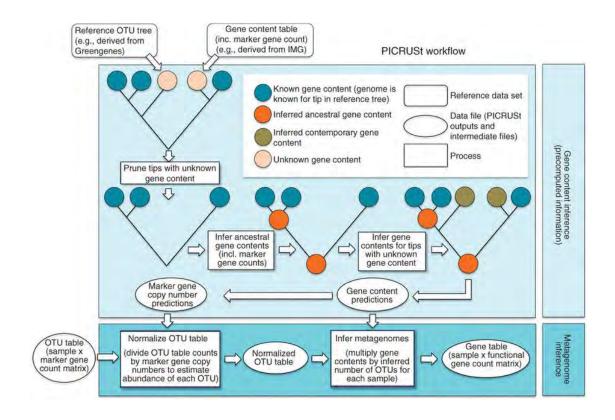
- Warming effect on the microbial functions
 - Ecological guild assignment of fungal taxa
 - Predictive functional profiling of bacterial communities (PICRUST) from HTS data
 - Quantification of functional genes representing major inorganic nitrogen cycling pathways



Soil bacterial and fungal communities are strongly shaped by the habitat type and soil layer



Fungal community composition changed in the heath


Cover of deciduous shrubs associated with ectomycorrhizal fungi increased in the heath and mesic meadow

PICRUST (Phylogenetic Investigation of Communities by Reconstruction of Unobserved STates)

Langille et al., 2013, Nature Biotechnology 31.

Pathways for simple carbon compounds degradation are more abundant in the heath

Carbohydrate metabolism

Amino sugar and nucleotide sugar metabolism

Starch and sucrose metabolism

Galactose metabolism

Fructose and mannose metabolism

Pentose and glucuronate interconversions

Pentose phosphate pathway

Citrate cycle

Glycan biosynthesis and metabolism

Glycosaminoglycan degradation
Other glycan degradation

Glycosphingolipid biosynthesis

Pathways for recalcitrant carbon compounds degradation are more abundant in two meadows

Xenobiotics biodegradation and metabolism

Atrazine degradation

Benzoate degradation

Caprolactam degradation

Polycyclic aromatic hydrocarbon degradation

Energy metabolism

Carbon fixation pathways in prokaryotes

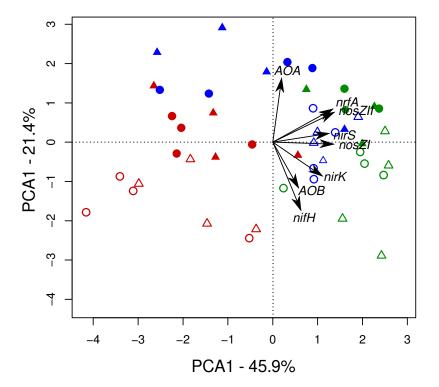
Sulfur metabolism

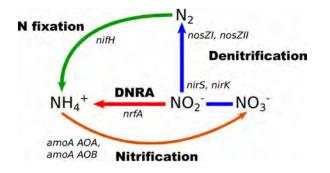
Methane metabolism

Nitrogen metabolism

Metabolism of terpenoids and polyketides

Geraniol degradation


Limonene and pinene degradation


Terpenoid backbone biosynthesis

Biosynthesis of type II polyketide backbone

Potential for denitrification and respiratory ammonification is higher in two meadows

Archaeal and bacterial ammonia oxidation separated between mineral and organic soil layer

Conclusions:

- Warming impact only on the fungal community composition in the heath – are belowground microbial communities largely resistant to long-term warming in tundra soil?
- Global warming likely has site specific impact on soil C and N balance depending on the local genetic potential and soil conditions.

Acknowledgements

Swedish Research Council Formas (grant 2013-655)

The Carl Trygger Foundation

Thank you for your attention!