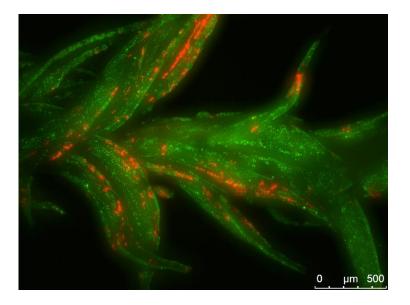


This project has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No 675546.

Mosses matter

- Carbon sink
- Major source of N N₂-fixing bacteria
- Higher temperatures \rightarrow increase in N₂ fixation
- Shading by higher plants \rightarrow decrease in N₂ fixation
- Moisture
 - Drier conditions \rightarrow decrease in N₂ fixation
- Recent meta-analysis: experimental warming has no effect (Salazar et al 2019 Ecology in press)
 - Is it due to a shift in the bacterial community?



The bryosphere – the bacterial component

"the combined complex of living and dead moss tissue and associated organisms"

Lindo and Gonzalez 2010 Ecosystems

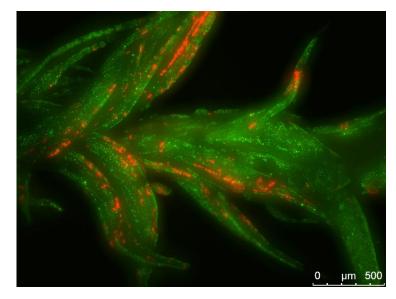
- Cyanobacteria
- <u>Alphaproteobacteria</u>
- Betaproteobacteria
- Gammaproteobacteria
- Verrucomicrobia
- Plancomycetes
- Bacteroidetes
- Acidobacteria
- Actinobacteria

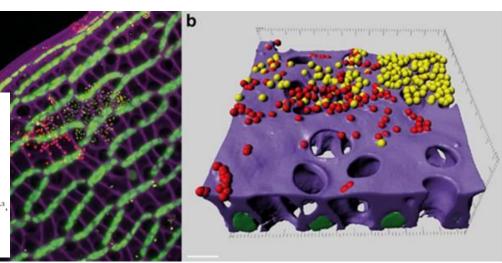
The bryosphere – the bacterial component

"the combined complex of living and dead moss tissue and associated organisms"

Lindo and Gonzalez 2010 Ecosystems

- Cyanobacteria
- Alphaproteobacteria
- Betaproteobacteria
- Gammaproteobacteria
- Verrucomicrobia
- Plancomycetes
- Bacteroidetes
- Acidobacteria
- Actinobacteria




ORIGINAL ARTICLE

Sphagnum mosses harbour highly specific bacterial diversity during their whole lifecycle

Anastasia Bragina¹, Christian Berg², Massimiliano Cardinale¹, Andrey Shcherbakov³ Vladimir Chebotar³ and Gabriele Berg¹

¹Institute of Environmental Biotechnology, Graz University of Technology, Graz, Austria; ²Institute of Plant Sciences, Karl-Franzens-University, Graz, Austria and ³All-Russia Research Institute for Agricultural Microbiology, St Petersburg, Russia

What is the effect of long-term warming on the bacterial community associated with *Racomitrium lanuginosum*?

"Warming leads to a shift in N_2 -fixing bacterial taxa with consequences for N_2 -fixation rates"

- N₂ fixation rates and *nifH* gene copy numbers
- Community structure
- Changes in relative abundance

• Taxonomic composition

of potential N₂-fixing taxa

Experimental design

Auðkúluheiði, Iceland

- Species-rich dwarf shrub heath
- 10 OTCs
- 10 control plots
- since 1997/1998 (20 years)

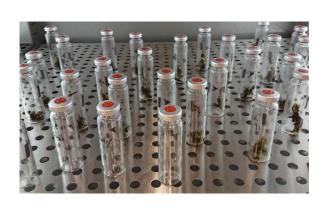
Racomitrium lanuginosum

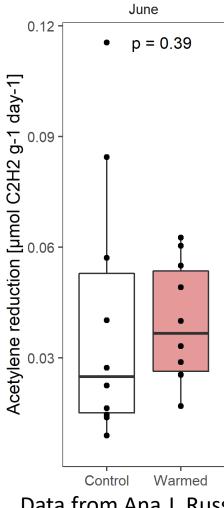
Sample processing

N₂-fixation rates

Acetylene reduction assays

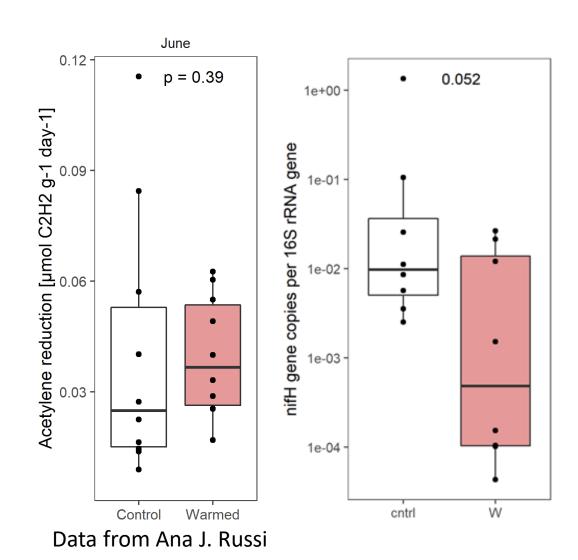
N₂-fixation potential


qPCR of *nifH* genes


Taxonomy and relative abundance of potentially N₂-fixing bacteria

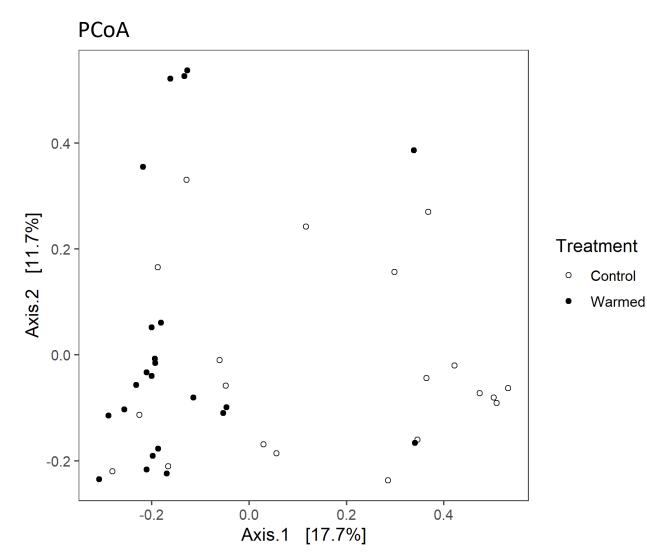
16S rRNA amplicon sequencing

No difference in N₂-fixation rates

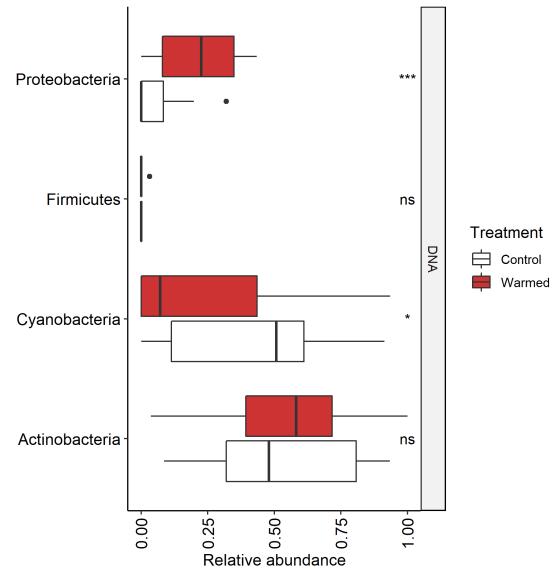

Data from Ana J. Russi

Introduction Hypothesis Methods Results Conclusio

No difference in N_2 -fixation rates, but N_2 -fixation potential tends to be lower under warming


- Proportion of N₂-fixing taxa (*nifH* copy per 16S rRNA gene copy) tends to be lower under warming
- Potential for N₂-fixation as part of the total bacterial community is lower under warming

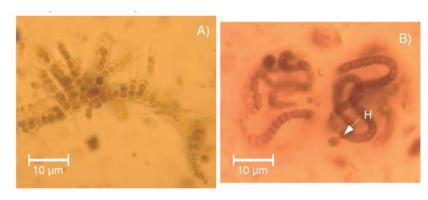
Warming slightly affects N₂-fixing community composition


Potential N_2 -fixers Permanova ~ Treatment P = 0.001 and R^2 = 0.08

Changes in relative abundance of taxa on phylum level

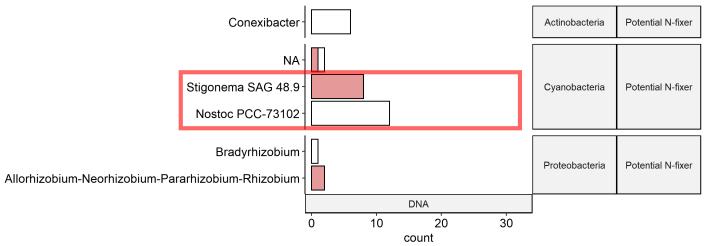
Potential N₂-fixers

- Cyanobacteria ↓
- Proteobacteria 个
 - Probably not adding significant amounts


Cyanobacterial indicator taxa

• Cyanobacterial genera:

Stigonema warming


Nostoc control

- Stigonema most transcriptionally efficient N₂-fixer in boreal forest feathermosses (Warshan et al. 2016)
- Might explain why nifH gene abundances decrease while N₂-fixation rates stay similar

Houle et al (2006) Identification of two genera of N2-fixing cyanobacteria growing on three feater moss species in boreal forests of Quebec, Canada

Potential N₂-fixing indicator taxa

Conclusion

N₂ fixation rates did not change, due to shifts in the bacterial community

Other work: lichen bacterial community under warming, moss bacterial community during primary succession

Thanks for your attention!

Oddur Vilhelmsson
Ana J. Russi
Ingibjörg Svala Jónsdóttir
Ólafur S. Andrésson
Christoph Keuschnig
Anne D. Jungblut
Tim Vogel
Catherine Larose