# Biogeochemical response strength of a high-Arctic ecosystem to environmental drivers

heterogeneity among ecosystem compartments and habitats

**Matteo Petit Bon** <sup>1,2,\*</sup>, Hanna Böhner <sup>1,2</sup>, Kari Anne Bråthen <sup>2</sup>, Virve Tuulia Ravolainen <sup>3</sup>, Ingibjörg Svala Jónsdóttir <sup>1,4</sup>

- <sup>1</sup> UNIS The University Centre in Svalbard
- <sup>2</sup> UiT The Arctic University of Norway
- <sup>3</sup> NPI Norwegian Polar Institute
- <sup>4</sup> University of Iceland
- \*matteo.petitbon@unis.no

20<sup>th</sup> ITEX Meeting – Documenting and understanding tundra ecosystem changes Parma, Italy, 10 – 13 September 2019







## Biogeochemical response strength





#### Biogeochemical response strength





**Ecosystem biogeochemical response strength to environmental drivers** 

#### **C-content**

Feedbacks to rates of C exchange

→ C balance

#### **N**-content

Feedbacks to rates of nutrient cycling

→ N fluxes















Fox and Madsen, 2017 – Ambio; Førland et al. 2011 – Adv. Meteor.; Speed et al. 2010 – JoE























## **Research questions**



What is the response strength of different ecosystem compartments to goose disturbance and summer warming in terms of their C and N content (and C:N ratio)?

- > Differences between ecosystem compartments
- Differences between habitat-types
- > Differences between two experimental seasons





Seven sites

250 m

















## Study design and sampling design



Snowmelt period

May 26 May June July August September

## Study design and sampling design





## Study design and sampling design





## Study design and sampling design Sample collection **Treatment** (2016 and 2017) implementation (2016 and 2017) **Vascular** plants Mosses Organic Snowmelt period soil September May July August 26 May June 2016 2017

#### Study design and sampling design Sample collection **Treatment** (2016 and 2017) implementation (2016 and 2017) Vascular plants Mosses Organic Snowmelt period soil May July **August** September 26 May June 10 $\widehat{\mathcal{O}}$ Year: 2016 2017 2016 July temperature (° 9 Mosses 8 Loggers 2017 Control

#### Results: biogeochemical response strength





#### Results: biogeochemical response strength





Response direction: 

Positive 

Negative



#### **Results: C-content**





- Similar response strength among compartments, but to different treatments
- Similar response strength among habitats, but for different compartments
- Response strength to treatments was higher in 2017
- More differences between experimental seasons (and larger effect sizes)

#### **Results: N-content**





- Response strength:
  vascular plants >
  organic soil >
  mosses, but to
  different
  treatments
- Equal response strength in ME and MO, but WE was unresponsive
- Response strength to treatments was higher in 2017
- More differences between experimental seasons (and larger effect sizes)

#### **Results: C:N ratio**





- Only vascular plants responded to treatments
- Similar response strength in ME and MO, but WE was unresponsive
- Response strength to treatments was higher in 2017

More differences between experimental seasons (and larger effect sizes)

## **Summary and conclusions**



# Response strength to treatments





- Vascular plants > organic soil > mosses
- N-content > C-content > C:N ratio
- ME-habitats > MO-habitats > WE habitats
- Year 2017 > Year 2016

### Natural between-season variability

- > Higher compared to response strength to treatments
- Vascular plants > organic soil > mosses
- C:N ratio > C-content = N-content
- WE habitats > MO-habitats > ME-habitats

## **Summary and conclusions**

JNIS ON

- Spring goose disturbance and summer warming represent significant drivers
- Strong heterogeneity in response strength to treatments among compartments, proxies of biogeochemical processes and habitattypes
  - → differential responses to perturbations
  - → coupling between C and N cycling?
- Higher natural between-season variability
- → our environmental perturbations were within the natural variation of these systems
- → biological relevance of ecosystem responses to environmental perturbations
- Patterns in natural between-season variability diametrically opposed to response patterns to treatments
   → thresholds in proxy and habitat

responses?

**PhD project**: Effects of herbivory and summer warming on tundra plant-community nutrient levels and dynamics

Matteo Petit Bon Email: <u>matteo.petitbon@unis.no</u>



Project grant 15/128 (2015) Project grant 269957 (2017)



#### References



- Chapin III, F. S., McFarland, J., McGuire, A. D., Euskirchen, E. S., Ruess, R. W., & Kielland, K. (2009). The changing global carbon cycle: linking plant—soil carbon dynamics to global consequences. *Journal of Ecology*, *97*(5), 840-850.
- Elmendorf, S. C., Henry, G. H., Hollister, R. D., Björk, R. G., Bjorkman, A. D., Callaghan, T. V., ... & Fosaa, A. M. (2012). Global assessment of experimental climate warming on tundra vegetation: heterogeneity over space and time. *Ecology letters*, 15(2), 164-175.
- Fox, A. D., & Madsen, J. (2017). Threatened species to super-abundance: The unexpected international implications of successful goose conservation. *Ambio*, 46(2), 179-187.
- Førland, E. J., Benestad, R., Hanssen-Bauer, I., Haugen, J. E., & Skaugen, T. E. (2011). Temperature and precipitation development at Svalbard 1900–2100. *Advances in Meteorology*, 2011.
- **Henry, G. H. R., & Molau, U. (1997).** Tundra plants and climate change: the International Tundra Experiment (ITEX). *Global Change Biology, 3*(S1), 1-9.
- Hobbie, S. E., Nadelhoffer, K. J., & Högberg, P. (2002). A synthesis: the role of nutrients as constraints on carbon balances in boreal and arctic regions. *Plant and Soil*, *242*(1), 163-170.
- Molau, U., & Mølgaard, P. (1996). International tundra experiment (ITEX) manual. Danish Polar Center, Copenhagen, Denmark.
- Nadelhoffer, K. J., Giblin, A. E., Shaver, G. R., & Laundre, J. A. (1991). Effects of temperature and substrate quality on element mineralization in six arctic soils. *Ecology*, 72(1), 242-253.
- Rustad, L. E. J. L., Campbell, J., Marion, G., Norby, R., Mitchell, M., Hartley, A., ... & Gurevitch, J. (2001). A meta-analysis of the response of soil respiration, net nitrogen mineralization, and aboveground plant growth to experimental ecosystem warming. *Oecologia*, 126(4), 543-562.
- Shaver, G. R., Canadell, J., Chapin, F. S., Gurevitch, J., Harte, J., Henry, G., ... & Rustad, L. (2000). Global Warming and Terrestrial Ecosystems: A Conceptual Framework for Analysis. *BioScience*, *50*(10), 871-882.
- Speed, J. D., Cooper, E. J., Jónsdóttir, I. S., Van Der Wal, R., & Woodin, S. J. (2010). Plant community properties predict vegetation resilience to herbivore disturbance in the Arctic. *Journal of Ecology*, *98*(5), 1002-1013.