Zeni Shabani

Picture of Zeni Shabani

Assistant Professor


224 Henry Hall

(616) 331-3229

Winter Office Hours 

MW: 10 AM - 11 AM, & TF: 3 PM - 4 PM


BMS 250 - Anatomy & Physiology I


Ph.D. (Neurobiology & Behavior), Georgia State University, 2009
B.S. (Microbiology), Oklahoma State University, 2001


My broad research interests are on genetic risks of drug use disorders and the associated neural substrates that influence specific aspects of drug use such as, drug taking, seeking and relapse.  Methamphetamine (MA) use like that of opioids is a widespread problem in US and is highly addictive drug with devastating consequences for the individual and society at large.  My research program explores binge MA use, MA withdrawal and relapse using a genetic mouse model for high and low MA intake.  The main aim of my research is to identify and explore druggable targets for future development of therapeutic interventions.  Extensive work by my collaborator at Oregon Health & Science University, and her group, who developed this mouse model system have identified at least two quantitative trait loci (QTL) associated with MA intake, located in chromosome 10 and X. In particular, two gene candidates located in the chromosome 10 QTL, namely a u-opioid receptor and a g-protein coupled receptor, known as trace-amine associated receptor TAAR1, seem to play an important role in the MA intake, and other correlated traits.  Correlated behavioral traits of interest involve: sensitivity to rewarding and aversive effects through procedures such as, conditioned place preference, conditioned place aversion, conditioned taste aversion; drug reinforcement such as the operant self-administration paradigms; drug withdrawal in form of anxiety and depression-like symptoms tests, such as, zero or plus-maze, forced-swim, and tail-suspension. Recent pharmacological manipulations of TAAR1 receptor in a number of these experiments seem to support the hypothesis that TAAR1 receptor plays an important protective role in MA use and therefore is a prime druggable target to explore in the future.  In sum my lab pursues neuroscience related questions mostly at the behavioral genetics, physiological, neurochemical, and pharmacological level.