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ABSTRACT

Eukaryotic communities commonly display a positive relationship between biodiversity and ecosystem function (BEF) but
the results have been mixed when assessed in bacterial communities. Habitat heterogeneity, a factor in eukaryotic BEFs,
may explain these variable observations but it has not been thoroughly evaluated in bacterial communities. Here, we
examined the impact of habitat on the relationship between diversity assessed based on the (phylogenetic) Hill diversity
metrics and heterotrophic productivity. We sampled co-occurring free-living (more homogenous) and particle-associated
(more heterogeneous) bacterial habitats in a freshwater, estuarine lake over three seasons: spring, summer and fall. There
was a strong, positive, linear relationship between particle-associated bacterial richness and heterotrophic productivity
that strengthened when considering dominant taxa. There were no observable BEF trends in free-living bacterial
communities for any diversity metric. Biodiversity, richness and Inverse Simpson’s index, were the best predictors of
particle-associated production whereas pH was the best predictor of free-living production. Our findings show that
heterotrophic productivity is positively correlated with the effective number of taxa and that BEF relationships are
associated with microhabitats. These results add to the understanding of the highly distinct contributions to diversity and
functioning contributed by bacteria in free-living and particle-associated habitats.
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INTRODUCTION

In freshwater ecosystems, heterotrophic bacteria, despite their
tiny size, regulate the freshwater carbon cycle by processing
globally significant amounts of carbon (Cotner and Biddanda
2002; Tranvik et al. 2009; Cole 2013; Biddanda 2017). Therefore,
it is essential to understand the factors that control microbial
activity—the underlying context for why freshwater ecosystems
serve as hot spots of carbon cycling. One of these factors is bio-
diversity, which has resulted in hundreds of studies that have
evaluated the relationship between biodiversity and ecosystem
function (BEF). Studies have found that there is an even larger
biodiversity effect in natural ecosystems compared to controlled
experiments (Duffy, Godwin and Cardinale 2017). BEF relation-
ships focusing on the number of species (i.e. species richness) as
the biodiversity value are generally positive and asymptotic and
thus biodiversity loss causes a small change in ecosystem func-
tion at first and then, at some tipping point, a dramatic decrease
in function (Cardinale et al. 2012; Tilman, Isbell and Cowles 2014).
While this field was originally developed with a focus of on the
local and global species loss of eukaryotic organisms, bacterial
species can also go extinct (Louca et al. 2018) and species num-
bers have been found to be decreasing at local scales within the
human gut (Blaser 2014) and terrestrial ecosystems (Singh et al.
2014). Of particular concern is the loss of the number of bacterial
guilds responsible for key geochemical transformations, such
as methane oxidation (Levine et al. 2011) that controls rates of
methane emissions. Elucidating the relationship between bac-
terial biodiversity and its impact on ecosystem functioning can
help inform the potential impact of species loss or decreased
biodiversity on bacterial ecosystem function.

An extrapolation from eukaryotic relationships would pre-
dict there to be no richness-ecosystem function relationships for
bacterial communities because they are generally composed of
an order of magnitude more taxa than the communities in most
eukaryotic BEF studies. Several studies have indicated no rela-
tionship between species richness with broad functional pro-
cesses, such as heterotrophic respiration or biomass produc-
tion, that are performed by many taxa (see Fig. 5 in Langen-
heder, Lindström and Tranvik 2006; Levine et al. 2011; Delgado-
Baquerizo et al. 2016). Yet, other studies on broad processes
such as denitrification (Philippot et al. 2013) and on narrow
metabolic processes that are catalyzed by few bacterial taxa,
such as methanotrophy (Levine et al. 2011), and the degradation
of triclosan and microcystin (Delgado-Baquerizo et al. 2016) did
find evidence of bacterial richness and ecosystem function rela-
tionships. In addition to the number of species, there are sev-
eral other components of biodiversity including functional trait
or gene richness (i.e. abundance-unweighted) (Reich et al. 2004;
Flynn et al. 2011; Evans et al. 2017), species or functional domi-
nance or evenness (i.e. abundance-weighted) (Wilsey and Potvin
2000; Wilsey and Polley 2004; Kirwan et al. 2007; Wittebolle et al.
2009) and phylogenetic diversity metrics (Flynn et al. 2011). Plant
community evenness has been shown to impact plant produc-
tivity more than richness (Wilsey and Potvin 2000; Wilsey and
Polley 2004; Kirwan et al. 2007) and the initial evenness of micro-
bial microcosms has been found to be a key factor in functional
stability, even under the selective stressors of temperature and
salt stress (Wittebolle et al. 2009).

Phylogenetic relatedness, while having received less atten-
tion than richness and evenness, may also influence BEF rela-
tionships. Indeed, some studies show relationships across dif-
ferent ecosystems between phylogenetic diversity and ecosys-
tem functions (Cadotte, Cardinale and Oakley 2008; Jiang, Tan
and Pu 2010). However, research with freshwater green algae
(Fritschie et al. 2014; Venail et al. 2014) did not find this relation-
ship. A more recent study found the opposite result by reporting

that closely related green algal species had weaker competition
and more facilitation than distantly related species, thus result-
ing in higher productivity (Narwani et al. 2017). Relationships
between phylogenetic relatedness among community members
and ecosystem function have been assessed in bacterial systems
(Tan et al. 2012; Galand, Salter and Kalenitchenko 2015; Roger
et al. 2016), though it is worthwhile to expand these findings to
more natural communities.

The nature of BEF relationships and the mechanism(s) that
underpins them may depend on habitat structure or hetero-
geneity. Increasing habitat heterogeneity has been found to
enhance the strength of BEF relationships (Tylianakis et al.
2008), presumably due to a greater role for niche complemen-
tarity effects in heterogeneous environments (Cardinale 2011).
Species sorting dominates community assembly over stochastic
forces with increased environmental heterogeneity because of
more available niches (Lagenheder and Lindström 2019), which
could facilitate complementary interactions within heteroge-
neous environments and thus, increase the strength of BEF rela-
tionships. While habitat heterogeneity contributes to increased
diversity within bacterial populations and communities (Shade,
Jones and McMahon 2008; Zhou et al. 2008), the influence of habi-
tat heterogeneity on BEF relationships remains unknown for
bacterial systems.

In this study, we hypothesized that bacterial diversity would
be positively correlated with bacterial heterotrophic production,
and that this relationship would be stronger in more hetero-
geneous environments. We simultaneously surveyed free-living
and particle-associated surface water bacterial communities.
These habitats have been extensively studied for their ability to
sustain distinct bacterial communities and ecosystem processes
(Crump, Armbrust and Baross 1999; Bizˇić-Ionescu et al. 2014;
Mohit et al. 2014; Schmidt, White and Denef 2016; Wang et al.
2019). In addition, studies on model aggregates had 3-fold higher
bacterial protein production and two orders of magnitude higher
protease activity (Grossart et al. 2007), indicating particles can
be an important place for microbial activity in aquatic ecosys-
tems. Particulate matter comprises a variety of types and sizes
of particles with some particles also harboring physicochemical
gradients (Simon et al. 2002), and hence represents a more het-
erogeneous habitat than the surrounding water. We tested BEF
relationships using a variety of the Hill numbers (qD), which rep-
resent the effective numbers of taxa or lineages in a community
and include richness (0D), Shannon (1D) and Simpson (2D) diver-
sity and their phylogenetic decompositions (i.e. 0PD, 1PD, 2PD;
Chao, Chiu and Jost 2010). We focused on heterotrophic bacte-
rial production as our measure of ecosystem function, as it is
a key process affecting freshwater bacterial growth that in turn
fuels the eukaryotic food web (Cotner and Biddanda 2002).

METHODS

Lake sampling and sample processing

Surface water samples were collected at 1 meter depth
from 4 long-term sampling stations (Steinman et al. 2008) in
mesotrophic Muskegon Lake (Figure S1), which is a freshwater
estuarine lake connecting the Muskegon River on its east side
and Lake Michigan on its west side. These stations included the
mouth of the Muskegon River (43.2501, −86.2557), the channel
to Bear Lake (43.2387, −86.2992; a hypereutrophic lake), channel
to Lake Michigan (43.2333, −86.3229; oligotrophic lake) and the
deepest basin of Muskegon Lake (43.2239, −86.2972; max depth
= 24 m).

Samples were collected during the morning to early
afternoon of 3 days in 2015 (May 12, July 21 and Septem-
ber 30) aboard the R/V W.G. Jackson. All water samples were
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collected with vertical Van Dorn samplers. Additionally, a ver-
tical profile of temperature (T), pH, specific conductivity (SPC),
oxidation-reduction potential (ORP), chlorophyll (Chla), total dis-
solved solids (TDS) and dissolved oxygen (DO) was constructed
at each station to characterize the water column using a cali-
brated YSI 6600 V2–4 multiparameter water quality sonde (Yel-
low Springs Instruments Inc.). Total Kjeldahl nitrogen (TKN),
ammonia (NH3), total phosphorus (TP) and alkalinity (Alk) were
processed from whole water while nitrate (NO3), phosphate
(PO4) and chloride (Cl−) were hand filtered using a 60 mL syringe
fitted with Sweeny filter holder with a 13 mm diameter 0.45 μm
pore size nitrocellulose filters (Millipore) and were determined
by standard wet chemistry methods in the laboratory (EPA 1993).

Bacterial abundance by epifluorescence microscopy

Lake surface water samples were processed within 2–6 hr of
their collection for determination of heterotrophic bacterial
abundance. Unfiltered lake water samples (5 mL) were preserved
with 2% formalin and 1 mL subsamples were stained with acri-
dine orange stain and filtered onto black 25 mm 0.2 μm pore
size polycarbonate filters (Millipore) at a maximum pressure
of 0.1 Bar or 1.5 PSI. Prepared slides were stored frozen until
manual enumeration by standard epifluorescence microscopy at
1000x magnification under blue light excitation (Hobbie, Daley
and Jasper 1977). Bacteria within the field of view (100 μm
x 100 μm) that were not associated with any particles were
counted as free-living bacteria, whereas bacteria that were on
particles were counted as particle-associated. A total of 20 fields
of view were counted for each sample. Sample filtration may
bias counts due to free-living or particle-associated cells being
hidden on the underside of particles, free-living bacteria set-
tling on top of particles, or particle-associated cells dislodging.
In the absence of any quantitative studies that have rigorously
addressed this issue, we have assumed the net effect of these
opposing methodological biases to be negligible in the present
study.

Heterotrophic bacterial production measurements

Community-wide heterotrophic bacterial production was mea-
sured using [3H] leucine incorporation into bacterial protein
(Kirchman, K’nees and Hodson 1985; Simon and Azam 1989).
Quadruplicate 1 m water samples were incubated in the dark
under in situ temperatures for 1 hr with a 20 nM final concen-
tration of [3H]-leucine. One 50% trichloroacetic acid (TCA)-killed
control was run for every three live incubations of the same
sample. At the end of the incubation with [3H]-leucine, cold
TCA-extracted samples were filtered onto 3 μm filters that rep-
resented the leucine incorporation by particle-associated bac-
teria (>3.0 μm). Each filtrate was collected and filtered onto
0.2 μm filters and the activity therein represented incorpora-
tion of leucine by free-living bacteria (3-0.22 μm). The rate of
uptake was linear over a 2 hr incubation period and the con-
trols accounted for 0.5–6% of the [3H]-leucine found in live treat-
ments. On the basis of such repeatable linear uptake measure-
ments over the representative period of the incubations, we
presumed there was no measurable recirculation of incorpo-
rated [3H] back into solution. The timeline for our incubations
(1 hr), as well as the sensitivity of the [3H] method, were insuf-
ficient to distinguish between the production rates of r- versus
k-selected taxa. However, longer incubations would have likely
led to problems of non-linear uptake and recirculation of the
incorporated [3H] (Kirchman, K’nees and Hodson 1985). Thus, we
chose to run the incubations over the short time of 1 hr where

bacterial community production measurements were most reli-
able. Measured leucine incorporation during the incubation was
converted to bacterial carbon production rate using a standard
theoretical conversion factor of 2.3 kg C per mole of leucine
(Simon and Azam 1989). Per-capita heterotrophic production
was estimated by dividing heterotrophic production by the cell
counts measured in each fraction.

Preservation of bacterial filters in the field

Microbial cells for DNA extraction were collected by sequential
in-line filtration onto a 3 μm (> 3 μm) isopore polycarbonate fil-
ter (TSTP, 47 mm diameter, Millipore, Billerica, MA, USA) for the
particle-associated fraction and a 0.22 μm (3–0.22 μm) Express
Plus polyethersulfone membrane filter (47 mm diameter, Milli-
pore, MA, USA) for the free-living fraction. We used 47 mm poly-
carbonate in-line filter holders (Pall Corporation, Ann Arbor, MI,
USA) and an E/S portable peristaltic pump with an easy-load
L/S pump head (Masterflex R©, Cole Parmer Instrument Company,
Vernon Hills, IL, USA). The total volume filtered varied from 0.8–
2.2 L with a maximum filtration time of 16 minutes per sample.
Filters were submerged in RNAlater (Ambion) in 2 mL cryovials,
frozen in liquid nitrogen and transferred to a −80◦C freezer until
DNA extraction.

DNA extraction, sequencing and preprocessing

DNA extractions were performed using an optimized method
based on the AllPrep DNA/RNA/miRNA Universal kit (Qia-
gen; McCarthy et al. 2015; details in supplementary methods).
Extracted DNA was prepared for sequencing based on Illu-
mina’s protocol for MiSeq libraries (15 039 740 Rev. D). DNA
was sequenced using Illumina MiSeq V2 chemistry 2 × 250
(500 cycles) of dual index-labelled primers that targeted the V4
hypervariable region of the 16S rRNA gene (515F/806R) (Capo-
raso et al. 2012; Kozich et al. 2013) at the Microbial Systems Lab-
oratories at the University of Michigan Medical School in July
2016. RTA V1.17.28 and MCS V2.2.0 software were used to gen-
erate data. Fastq files were submitted to NCBI sequence read
archive under BioProject accession number PRJNA412984. We
analyzed the sequence data using MOTHUR V.1.38.0 (seed = 777;
Schloss et al. 2009) based on the MiSeq standard operating pro-
cedure accessed on 3 November 2015 and modified with time
(see data accessibility and supplemental methods). A combina-
tion of the Silva Database (release 123; Quast et al. 2013) and
the freshwater TaxAss 16S rRNA database and pipeline (Rohwer
et al. 2018, accessed August 18, 2016) were used for classifica-
tion of operational taxonomic units (OTUs). All non-bacterial
and chloroplast sequences were pruned out of the dataset and
replicate samples were merged by summing sample sequenc-
ing read counts using the merge samples function (phyloseq). A
batch script for our protocol can be found in this project’s GitHub
page in https://github.com/DenefLab/Diversity Productivity/bl
ob/master/data/mothur/mothur.batch.taxass. After primary fil-
tering, 7806 OTUs remained. Finally, OTUs with two sequences
or less throughout the entire dataset were removed as these are
more prone to be artefacts originating from sequencing errors or
the OTU clustering algorithm. The remaining 2979 OTUs were
used in the biodiversity analysis. Representative sequences of
each remaining OTU were collected from the aligned fasta file
produced within mothur, and header names in the mothur out-
put fasta file were modified using bbmap (Bushnell 2016) to only
include the OTU name. A phylogenetic tree was created with
FastTree using the GTR+CAT (general time reversible) model
(Price, Dehal and Arkin 2010). Mismatches between the species
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community data matrix and the phylogenetic tree were checked
with the match.phylo.comm command (picante).

Estimating biodiversity

We measured the within-sample (alpha) diversity of particle-
associated and free-living communities in two ways. First, we
estimated diversity with the Hill numbers (qD) using the iNEXT
package, which interpolates and extrapolates through rarefac-
tion and prediction (Hsieh, Ma and Chao 2016; Figure S2A). The
Hill numbers are ideal for comparing across studies because
they differentially weight species richness and relative abun-
dances with an effective number of species in a sample for a
given order, q. As q increases, species abundances are weighted
more and therefore the impact of rare taxa are decreased. We
calculated the Hill numbers for three orders (q = 0, 1, 2) with the

equation qD = (
S∑

i = 1
pq

i )
1

1 − q where S is the number of species in

the sample and pi is the relative abundance of the ith species.
0D represents the ‘effective number of observed species’ or
observed richness, whereas 1D indicates the ‘effective number
of typical species’ or Shannon’s diversity (i.e. exp(Shannon
Entropy)) and 2D marks the ‘effective number of dominant
species’ or the Inverse Simpson’s index (Chao, Chiu and Jost
2016).

Second, we built off of the first diversity metrics mentioned
above by using a series of phylogenetic Hill numbers proposed
by Chao, Chiu and Jost (2010), which consider the topology of a
phylogenetic tree, the relative branch lengths and the relative
abundance of each branch. Thus, the phylogenetic Hill num-
bers indicates the ‘effective number of lineages’ and will always
be lower than the OTU Hill diversity numbers (Chao, Chiu and
Jost 2010, 2016). We calculated the phylogenetic Hill numbers
using the hill phylo() function within the hillR (Li 2018) R Pack-

age for q = 0, 2: qPD(T) = (
∑

i∈BT
L i ( ai

T )q)
1

(1−q) or for q = 1, 1PD(T)
= exp(−∑

i∈BT

L i
T ai logai ) where T is the tree depth, BT is the total

branch length for T depth, L i is the length of branch i in the set
of branches in BT and ai is the sum of relative abundances of all
OTUs descended from branch i. When q = 0, the equation simpli-
fies to Faith’s phylogenetic diversity for ‘the effective total num-
ber of lineages’. When q = 1, the equation can be interpreted
as the ‘effective number of common lineages’ that is similar
to Allen’s Hpwhereas q = 2 represents the ‘effective number of
dominant lineages’ that is similar to Rao’s Q (Chao, Chiu and Jost
2016; Alberdi and Gilbert 2019). As such, correlations between
the Hill numbers and the phylogenetic Hill numbers are espe-
cially strong for q = 0 (Figure S2B) and become weaker as the
order increases (Figure S2C−D). For two communities that have
equal abundance and relative abundances, the community with
a deeper branching tree will have higher phylogenetic diversity
(see Fig. 4 in Alberdi and Gilbert 2019).

Further, we calculated the abundance-unweighted and
abundance-weighted mean pairwise phylogenetic distance (or
MPD). The MPD measures the average phylogenetic distance
between all combinations of two taxa pulled from the observed
community and compares it with a null community of equal
richness pulled from the gamma diversity of all the samples
(see supplemental methods for more details). We estimated the stan-
dardized effect size (SES) MPD with the ses.mpd() function in
the Picante R package (Kembell et al. 2010) using null.model =
‘independentswap’. Values higher than zero indicate phyloge-
netic overdispersion (longer phylogenetic distance between two
taxa) while values less than zero indicate phylogenetic cluster-
ing (shorter phylogenetic distance between two taxa) or that

species are more closely related than expected according to the
null community (Kembel 2009). Two communities of different
diversities can have similar values and thus, the SE SMP Ddoes
not represent a true diversity metric. Rather, the SE SMP D is a
community property signifying how phylogenetically clustered
a community is.

Statistical analysis

Data analysis was performed using R version 3.6.2 (R Core Team
2019), specifically with the phyloseq (McMurdie and Holmes
2013), stats (R Core Team 2019) and broom (Robinson 2017)
R packages. All main figures were made using the ggplot2
R package (Wickham 2009). To assess a statistical difference
in particle-associated and free-living cell abundances, pro-
duction rates and biodiversity metrics, a Wilcoxon rank sum
test (stats::wilcox.test() function) was performed. We evaluated
whether diversity metrics or environmental variables predicted
heterotrophic production rates using ordinary least squares
(OLS) linear regression (stats::lm() function) and accessed spe-
cific regression variables with broom::glance() (i.e. logLik, AIC,
adjusted R2). P-values were corrected for multiple inferences
using the Benjamini–Hochberg method to control the False Dis-
covery Rate (stats::p.adjust(method = ‘fdr’). As the regressions
had the same number of parameters (i.e. one), we selected the
best performing OLS regression by choosing the model with the
highest log(likelihood) (Hilborn and Mangel 2013).

To test which variable(s) were the best predictors of bacterial
heterotrophic production, we performed variable selection via
a lasso regression. We ran lasso regressions using the glmnet
R package (alpha = 1 and lambda.1se as the tuning parameter;
Friedman, Hastie and Tibshirani 2010) on all of the environmen-
tal, biodiversity and PC1 and PC2 from a redundancy analysis
(RDA). Variables for RDA analysis had no missing data and were
scaled to a mean of 0 and a standard deviation of 1 (stats::scale();
R Core Team 2019). RDA analysis was performed with stats::rda()
and plotted with stats::biplot().

Data and code availability

Original fastq files can be found on the NCBI sequence read
archive under BioProject accession number PRJNA412984. Pro-
cessed data and code can be found on the GitHub page for this
project at https://deneflab.github.io/Diversity Productivity/ with
the main analysis at https://deneflab.github.io/Diversity Produ
ctivity/Analysis.html.

RESULTS

Free-living communities had more cells/mL but
particle-associated communities had higher per-capita
heterotrophic production

On average, we observed an order of magnitude more cells
per milliliter in the free-living (FL) fraction than compared
to the particle associated (PA) fraction (FL: 734,522 ± 86,601
cells/mL; PA: 41,169 ± 7418 cells/mL; P = 1 × 10−6, Fig. 1A).
Community-wide heterotrophic production was ∼2.5 times
higher in the free-living fraction than the particle-associated
fraction (FL: 24.1 ± 5.06 μgC/L/day; PA:9.96 ± 2.38 μgC/L/day; P
= 0.024, Fig. 1B). However, when calculated per-capita, particle-
associated bacteria were an order of magnitude more produc-
tive on average than free-living bacteria (with log10 values of
−7.56 ± 0.114 in the FL and −6.73 ± 0.160 in the PA; P =
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Figure 1. Bacterial counts, community-wide and per-capita heterotrophic production differ between microhabitats. Particle-associated and free-living samples were

taken from four stations within Muskegon Lake during 2015 in May, July and September. (A) Free-living bacteria were an order of magnitude (105 cells/mL) more
abundant compared to particle-associated bacteria (104 cells/mL). (B) Free-living bacteria were more heterotrophically productive compared to particle-associated
bacteria. (C) Particle-associated bacteria were disproportionately heterotrophically productive per cell (expressed in log10(per-capita production)) compared to free-
living bacteria.

Figure 2. Particle-associated diversity tends to be higher than free-living communities, except in 2D (inverse Simpson’s index). The y-axis represents the Hill number
(qD) or the unweighted mean pairwise distance (MPD) (grey headers). As the order, q, increases in qD from 0 to 2, total, common and dominant taxa are weighted more,

respectively. When the unweighted MPD is negative, the total community is phylogenetic clustered whereas if its positive, the community is more phylogenetically
overdispersed. oD = OTU richness; 1D = Shannon diversity; 2D = inverse Simpson’s index. P-values were corrected for multiple inferences using the Benjamini-Hochberg
method from pairwise Wilcoxon rank sum tests.

7 × 10−5, Fig. 1C). Particle-associated and free-living cell abun-
dances in samples taken from the same water sample did not
correlate (Figure S3A). Heterotrophic production between corre-
sponding free-living and particle-associated fractions from the
same water sample were positively correlated for both commu-
nity (Adjusted R2 = 0.40, P = 0.017; Figure S3B) and per-capita
production rates (Adjusted R2 = 0.60, P = 0.003; Figure S3C).

Particle-associated communities tended to be more
diverse

Particle-associated bacterial communities tended to be more
diverse than free-living communities across all Hill numbers,
except 2D (i.e. inverse Simpson’s index; Fig. 2) and phylogenetic
Hill number (Figure S4). There was a larger difference between
particle-associated and free-living 0D and 1D in the spring, espe-
cially at the Bear and River stations (Figs 2, S5 and S6). When
assessed by station, particle-associated 0D and 2PD tended to be
higher than free-living communities and was maintained across
the four sampling stations in the lake (Figures S5 and S6A).

Particle-associated samples near inputs to Muskegon Lake (i.e.
River and Bear Lake stations) were on average more OTU-rich
than the outlet to Lake Michigan and the Deep stations (Figures
S5 and S6A). Additionally, the particle-associated samples at the
river station had almost twice the inverse Simpson’s diversity
compared with all other lake stations (Mean inverse Simpson
Indices: Outlet = 23.8 ± 8.2; Deep = 23.8 ± 7.0; Bear = 35.6 ± 20.3;
River = 59.8 ± 10.6; Figure S6A).

Particle-associated communities were more phylogenetically
clustered than free-living communities based on unweighted
mean pairwise distance (MPD) (P = 0.02, Figs 2 and S5). Com-
pared to other particle-associated samples, the outlet sta-
tion that connects to oligotrophic Lake Michigan had a larger
unweighted phylogenetic diversity, indicating phylogenetic
overdispersion (Figure S6A). There was no difference between
particle-associated and free-living weighted MPD (Figure S4).
However, all communities became less phylogenetically clus-
tered moving east to west from the river to outlet stations (Figure
S6A). Nevertheless, no sample across the entire dataset differed
significantly from the null model with a significance threshold
P-value of 0.05 for either unweighted or weighted MPD.
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Figure 3. 0D (OTU richness; left) and 2D (inverse Simpson; right) correlate with heterotrophic productivity. Top panel: Biodiversity and community-wide heterotrophic

production (μgC/L/day) relationships with (A) 0D and (B) 2D. Bottom panel: Biodiversity and log10(per-capita heterotrophic production) (μgC/cell/day) relationships with
(C) 0D and (D) 2D. Solid lines represent ordinary least squares regression models for significant linear regressions for particle associated (orange) communities. All R2

values represent the adjusted R2. P-values were corrected for multiple inferences using the Benjamini–Hochberg method.

Diversity–Productivity relationships were observed in
particle-associated but not free-living communities

We analyzed BEF relationships for both community-wide and
log10(per-capita) production due to the distinct patterns of these
two measures of heterotrophic production (Fig. 1). A strong,
positive, linear BEF relationship between both community-wide
and log10(per-capita) production was present in the particle-
associated communities. This relationship was significant for all
Hill numbers and low order phylogenetic Hill numbers (Figs 3,
S7 and S8). No BEF relationships were observed for the free-
living communities in any case. The 2D, inverse Simpson’s index,
explained the most amount of variation in community-wide
heterotrophic production (Fig. 3B; Adjusted R2 = 0.70, P = 0.002)
and per-capita (Fig. 3D; Adjusted R2 = 0.69, P = 0.002). When
the two data points with the highest inverse Simpson’s index
and heterotrophic production were removed from the regres-
sion (Fig. 3B), the relationship was still significant (Adjusted R2

= 0.38; P = 0.036), though not with richness (Fig. 3A; Adjusted R2

= -0.08; P = 0.59). These results are also robust across a range
of minimum OTU abundance filtering thresholds (see Sensitivity
Analysis of Rare Taxa in the supplemental methods and Figure
S9) and hold up for all threshold levels in 1D and 2D whereas it
only held up for richness until the removal of OTUs observed 25
times (community-wide heterotrophic production) and 15 times
(per-capita heterotrophic production).

BEF relationships were stronger as dominant taxa were
weighted more for the Hill numbers 0D,1D and 2D (Figs 3 and
S7), however, the opposite trend existed for the phylogenetic Hill
numbers. The strongest BEF relationship was with 0PD, a weak
relationship with 1PD (which was insignificant after P-value
adjustment for multiple tests) and no relationship with 2PD, a

Figure 4. Communities with more total lineages (0PD or Faith’s phylogenetic
diversity) tended to be more phylogenetically clustered based on the unweighted
mean pairwise distance (MPD). When the unweighted MPD is negative, the total

community is phylogenetic clustered whereas if its positive, the community is
more phylogenetically overdispersed. R2 value represents the adjusted R2 from
an ordinary least squares regression.

pattern for both community-wide and log10(per-capita) produc-
tion (Figure S7). To delve deeper into these qPD BEFs relation-
ships and the phylogenetic structuring of the communities, we
evaluated the relationship between the phylogenetic Hill num-
bers (0PD, 1PD, 2PD) and the mean pairwise distance (MPD). There
was a negative, linear correlation (Fig. 4; Adjusted R2 = 0.24, P
= 0.009), indicating that (particle-associated) communities with
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Table 1. The variables selected that best describe production in particle-associated and free-living fractions for community wide and log10(Per-
Capita Production).

Community-Wide Production Log10(Per-Capita Production)

Particle Richness & Inverse Simpson Richness & Inverse Simpson & Temperature
Free pH pH

more effective total lineages tended to be more phylogenetically
clustered whereas (free-living) communities that had lower total
lineages tended to be more phylogenetically overdispersed (Fig.
2). There was no relationship between 1PD and 2PD and weighted
MPD (Figure S10).

Diversity, and not environmental variation, was the
best predictor of particle-associated heterotrophic
production

To identify variables that best predicted community-wide and
log10(per-capita) heterotrophic production (i.e. remove variables
that were collinear with each other and/or uninformative), we
performed lasso regression with particle-associated and free-
living samples (Table 1). For prediction of community-wide het-
erotrophic production, only biodiversity variables were chosen
by the lasso including richness ( 0D) and the inverse Simpson’s
index (2D). An environmental variable, pH, was the sole vari-
able selected for free-living samples. In contrast, for log10(per-
capita) heterotrophic production, richness (0D), inverse Simp-
son’s index (2D) and temperature were selected for particle-
associated samples. Again, pH was the only predictor for free-
living samples. Therefore, the best model for heterotrophic pro-
duction in particle-associated microhabitats always included
biodiversity variables, richness and inverse Simpson’s index,
whereas free-living samples only included an environmental
variable, pH (Table 1).

To further verify that there were no confounding impacts
of seasonal and environmental variables on community-wide
and per-capita heterotrophic production, we separately per-
formed ordinary least square (OLS) regressions and a dimension-
reduction analysis of the environmental variables through a
redundancy analysis (Table S1 and S2; Figure S11). Specifically,
the first 2 environmental axes explained ∼70% of the envi-
ronmental variation in the sampling sites (Figure S11). Next,
we predicted community-wide and per-capita heterotrophic
production with all environmental variables and the first two
components as predictor variables with individual particle-
associated and free-living samples (Table S1 and S2). The best
single predictor of community-wide heterotrophic production
was inverse Simpson for particle-associated samples (logLik =
-34.12; Adjusted R2 = 0.70, FDR.p.value = 0.013; Table S1) and pH
for the free-living samples (logLik = 98.43; Adjusted R2 = 0.49, P
= 0.006, FDR.p.value = 0.18). Whereas, the best single predictor
of per-capita heterotrophic production was inverse Simpson for
particle-associated samples (logLik = -1.11; Adjusted R2 = 0.69,
FDR.p.value = 0.026) and pH for the free-living samples (logLik
= 4.20–2.39; Adjusted R2 = 0.78, FDR.p.value = 0.002) (Table S2).
Thus, the results from the OLS regressions agree with the lasso
regressions.

DISCUSSION

We examined bacterial biodiversity-ecosystem function (BEF)
relationships in relation to two microhabitats within freshwa-
ter lakes: particulate matter and the surrounding water. First,

free-living bacteria had higher community-wide production
whereas particle-associated bacteria had higher per-capita pro-
duction. Second, particle-associated communities were more
diverse based on all (phylogenetic) Hill numbers, except with
the inverse Simpson’s index (2D). Third, community-wide and
per-capita heterotrophic productivity of particle-associated, but
not free-living bacterial communities, displayed a positive, lin-
ear BEF relationship with both richness and evenness contribut-
ing. Finally, particle-associated heterotrophic production was
better explained by biodiversity than by environmental parame-
ters. Next, we sought to answer: Why do biodiversity–ecosystem
function relationships only exist in particle-associated commu-
nities?

Microbes have a large diversity of metabolisms and the
choice of which to focus on may inherently affect the BEF rela-
tionship. Indeed, ‘narrow’ metabolic processes that are cat-
alyzed by a small subset of taxa within bacterial communities,
such as some nitrogen and sulfur cycling, have been found to
display BEF relationships (Levine et al. 2011; Delgado-Baquerizo
et al. 2016). In contrast, for ‘broad’ processes that are performed
by the majority of taxa within a bacterial community, such
as heterotrophic production (i.e. focus of the present study)
and respiration, functional redundancy appears to weaken or
remove the presence of BEF relationships (Griffiths et al. 2000;
Langenheder, Lindström and Tranvik 2006; Wertz et al. 2006;
Levine et al. 2011; Peter et al. 2011, Galand, Salter and Kalen-
itchenko 2015). These findings are in line with the absence of
a BEF relationship for free-living bacterial communities in our
study, which are likely to be more prone to functional redun-
dancy due to stability and nutrient limitation of the bulk envi-
ronmental conditions.

However, the above results and hypotheses surrounding nar-
row and broad processes are in conflict with the strong BEF rela-
tionship we observed in particle-associated bacterial commu-
nities. As such, our study signifies that microhabitats or per-
haps habitat heterogeneity (or complexity) can influence bacte-
rial BEF relationships, in agreement with previous research in
eukaryotic systems across a variety of ecosystems (Tylianakis
et al. 2008; Cardinale 2011; Zeppilli et al. 2016). A study using
controlled stream mesocosms by Cardinale (2011) found that
niche complementarity effects are particularly important in
more heterogeneous environments. For example, in more het-
erogeneous streams, algal populations used different nutrients
and avoided direct competition for resources, resulting in coex-
isting unique species occupying distinct and local microhabitats
(Cardinale 2011). An experimental study by Gravel et al. (2011)
showed that BEFs depend on the legacy of previous evolution-
ary events. Specifically, they found that after several hundred
generations of evolution on a variety of carbon substrates, gen-
eralist bacteria were more productive because of their more effi-
cient exploitation of the environmental heterogeneity. Similarly,
Enke and Datta et al. (2019) found that generalists could suc-
cessfully attach to particles, regardless of the substrate. Finally,
a recent study on freshwater lake bacterial communities found
a positive correlation between OTU evenness and the number
of dissolved organic matter (DOM) components, suggesting that
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DOM resource heterogeneity may increase the diversity of bac-
terial communities by creating equity among bacterial species
(Muscarella et al. 2019). Thus, it is likely that particles could pro-
vide sustenance for a large generalist population with diverse
metabolisms. Additionally, the substrate (and metabolic) het-
erogeneity could promote communities with more dominant
species (i.e. higher evenness).

Though our observational study could not directly test the
role of niche complementarity effects, our analysis hints that
this could be the potential mechanism. The best predictor for
heterotrophic production in particles was the inverse Simp-
son’s index. Therefore, communities with higher production
have more dominant taxa, or higher evenness, supporting niche
complementarity alone or in combination with species selec-
tion as the mechanism. Communities that are more even have
an increased likelihood for complementary species to neighbor
each other. Neighboring cells are more likely to interact, cre-
ating the opportunity for facilitation and thus, increasing the
likelihood for niche complementarity (Battin et al. 2016). More-
over, we also found that particle-associated bacteria had higher
per-capita production, similar to previous studies (Anesio, Abreu
and Biddanda 2003), which could be strongly impacted by close
proximity to cells.

In our study, there are several reasons why heterogene-
ity of particulate matter may allow for niche complementar-
ity to occur. First, particles have a 2-fold layer of heterogene-
ity as they (A) may be composed of different substrates such
as organic matter from terrestrial or aquatic environments and
either heterotrophically or photosynthetically derived (Grossart
2010), and (B) each particle may comprise physicochemical gra-
dients as well (Simon et al. 2002). Second, microbial interac-
tions are more likely to occur between cells aggregated on par-
ticles as the interaction distances are usually much shorter
(Cordero and Datta 2016) compared to free-living bacterial cells.
In fact, genes mediating social interactions, such as motility,
adhesion, cell-to-cell transfer, antibiotic resistance, mobile ele-
ment activity and transposases, have been found to be more
abundant in marine particles than compared to the surround-
ing water (Ganesh et al. 2014). Third, dense patches of bacterial
cells on model marine chitin particles promoted cross-feeding
of oligosaccharides when particles were recalcitrant (Ebrahimi,
Schwartzman and Cordero 2019). Further, we found that parti-
cles in the spring from the Bear and River stations were espe-
cially diverse (i.e. 0D and 2D) and productive (Figs 2, 3, S4 and
S5). These stations have a closer proximity to external inputs,
which is primarily terrestrial sources in spring (Crump et al. 2003)
that are more likely to be recalcitrant. Diversity in these stations
are also more likely to be impacted by mass effects of terrestrial
taxa to the lake whereas species sorting will influence commu-
nities in the Deep and Outlet stations (Crump, Amaral-Zettler
and Kling 2012; Doherty et al. 2017).

The importance of niche complementarity in microbial com-
munities can also be deduced from findings in the field of micro-
biology, which have shown widespread metabolic interdepen-
dence among bacterial community members. First, a 2016 study
that reconstructed 2540 draft genomes of microbes found that
most bacteria specialize in one particular step in sulfur and
nitrogen pathways and ‘hand-off’ their metabolic byproducts to
nearby organisms (Anantharaman et al. 2016). It is likely that
metabolic hand-offs, a specific form of bacterial facilitation, will
occur more in particle-associated compared to free-living com-
munities. Indeed, some taxa on model marine chitin particles
are incapable of breaking down particles and instead rely on
carbon produced by primary degraders to thrive in later phases

of particle degradation (Datta et al. 2016), a repeatable result
for three other polysaccharide substrates (Enke and Datta et al.
2019). Second, Lilja and Johnson (2016) demonstrated that differ-
ent microbial cell types eliminate inter-enzyme competition by
cross feeding, which increases substrate consumption by allow-
ing intracellular resources to go towards a single enzyme, rather
than having two enzymes that perform two separate reactions
compete for nutrients within a cell. Third, some bacteria are
unable to grow in laboratory cultures unless they are in co-
culture with other organisms, which may be due to metabolic
hand-offs or growth factors such as siderophores or catalases
(Stewart 2012).

Considering that (i) closely related taxa share more genes and
metabolic pathways than distantly related bacterial taxa (Kon-
stantinidis and Tiedje 2005; Kim et al. 2014) and (ii) bacteria com-
monly have incomplete metabolic pathways, it may be possible
that closely related bacteria are most likely to exchange their
metabolic byproducts. This may be why we found that particle
communities with higher 0PD also tend to be more phylogenet-
ically clustered. In other words, as new taxa were added to the
community, the new taxa represented taxonomic clades more
similar to or already present in the community. Similarly, co-
cultures of phylogenetically related freshwater algae and vascu-
lar plants were more productive (Narwani et al. 2017). A study
of bacterial communities inhabiting Mediterranean soils found
that plots containing more recently diverged lineages had higher
ecosystem function levels than when more distantly related lin-
eages were present (Goberna and Verdú 2018). However, other
bacteria-focused studies found higher levels of antagonism with
more closely related taxa (Russel et al. 2017) and more bacte-
rial productivity (measured through colony forming units per
mL) with more distantly related taxa (Venail and Vives 2013).
Though, these latter studies were performed with lab grown
species grown in stable conditions. Thus, it might be expected
that potential interdependent relationships between bacteria
are broken through the creation of lab communities or by the
homogeneity of lab cultures that removes the complexity of spa-
tial heterogeneity, environmental fluctuations and interactions
with the rest of the bacterial community.

Previous studies on bacterial BEF relationships have used
three approaches to manipulate bacterial diversity (Krause et al.
2014): (1) removal of taxa (e.g. dilution to extinction) in which
complex communities are simplified by removing rare taxa
(Franklin et al. 2001; Wertz et al. 2006; Peter et al. 2011; Philip-
pot et al. 2013; see Roger et al. 2016 for a review of this approach;
fragmentation or knockout in Bell 2019), (2) addition of taxa (e.g.
manually assembled communities) in culture (Salles et al. 2009;
Tan et al. 2012; invasion or coalescence in Bell 2019), or (3) nat-
ural or manipulated environmental communities (Griffiths et al.
2000; Levine et al. 2011; Galand, Salter and Kalenitchenko 2015;
Rivett and Bell 2018). We took the third approach in this study. In
contrast to the other two approaches, this had the benefit of (a)
maintaining high diversity with both abundant and rare taxa, (b)
including both r- and k-selected organisms, (c) allowing natural
environmental and ecological forcings to shape the community
and (d) evaluating BEF relationships in diversity and productiv-
ity ranges that reflect natural communities. Admittedly, three
inherent weaknesses to our approach were that we cannot mea-
sure all the potential variables that influence heterotrophic pro-
ductivity, which are especially and inherently difficult to mea-
sure within particles, we only have 24 samples for a 12 versus
12 study and our analysis is correlational and we cannot manip-
ulate the system to unequivocally separate causes and conse-
quences of bacterial production. For example, strong correla-
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tions with heterotrophic production and pH in the free-living
samples may point to pH being a consequence of, rather than a
cause of, varying production levels. This is because bacterial pro-
duction and bacterial respiration are positively correlated (del
Giorgio and Cole 1998) and with increased respiration, pH may
decrease due to CO2 dissolution into the water.

Finally, we acknowledge that the typical sampling of bacte-
rial communities and analysis using DNA sequencing reflects
all bacteria present in the community and not necessarily only
the active members of the community contributing to a given
ecosystem function. In freshwater systems, up to 40% of cells
from the total community have been found to be inactive or
dormant (Jones and Lennon 2010). In addition, leucine incorpo-
ration is not universal across all taxa (Salcher, Posch and Pern-
thaler 2013). In this context, it is interesting to reflect on the rich-
ness in absence of function (i.e. x-intercept) of the observed BEF
relationship, which is 406 (Fig. 3A). This could be interpreted as
a baseline level of 406 particle-associated OTUs that are inactive
(either dead or dormant cells or environmental DNA) or inca-
pable of incorporating leucine. This value represents 29–87% of
the total particle-associated communities and may obscure the
actual diversity (and BEF relationship) of the community (Carini
et al. 2016).

In conclusion, we showed that increased bacterial diversity
led to increased bacterial heterotrophic production in particle-
associated but not in free-living communities. As such, our
findings help to further extend the principles of the impact of
microhabitat on BEF relationships from Eukarya to Bacteria, con-
tributing to current efforts to integrate macroecological theo-
ries into the field of microbial ecology (Barberán, Casamayor
and Fierer 2014). Additionally, we showed that communities
with higher phylogenetic diversity had higher per-capita het-
erotrophic production rates for 0PD, which we hypothesize to be
related to genome evolutionary patterns specific to bacteria that
result in interdependence. The unique nature of BEF relation-
ships across particle-associated and free-living habitats agrees
with the distinct community assembly and functional partition-
ing previously described between these two aquatic habitats
(Bižić-Ionescu et al. 2014; Ganesh et al. 2014; Mohit et al. 2014;
Schmidt, White and Denef 2016; Balmonte, Teske and Arnosti
2018). Future studies may go beyond observations to predict
changes in ecosystem function (Bell 2019) such as primary and
secondary (and/or heterotrophic) productivity, carbon respira-
tion and sequestration based on microhabitat-driven commu-
nity shifts changes.

SUPPLEMENTARY DATA

Supplementary data are available at FEMSEC online.
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a Sofina Gustave-Boël grant from the Belgian American Edu-
cational Foundation. We are grateful to the crew of the R/V
W.G. Jackson and the Grand Valley State University Robert B.

Annis Water Resources Institute science staff, and the gen-
erous help we received in the field from Amelia Waters and
Daniel S.W. Katz. Thank you to Kyle Buffin and Amadeus
Twu for help with DNA extractions. Finally, we thank Deb-
orah Goldberg, George Kling and members of the Denef,
Dick and Duhaime laboratories for their comments on the
manuscript.

Conflicts of interest. None declared.

REFERENCES

Alberdi A, Gilbert MTP. A guide to the application of Hill num-
bers to DNA-based diversity analyses. Mol Ecol Resour 2019;19:
804–17.

Anantharaman K, Brown CT, Hug LA et al. Thousands of micro-
bial genomes shed light on interconnected biogeochemical
processes in an aquifer system. Nat Commun 2016;7:13219.

Anesio AM, Abreu PC, Biddanda BA. The role of free and attached
microorganisms in the decomposition of estuarine macro-
phyte detritus. Estuarine Coastal Shelf Sci 2003;56:197–201.

Balmonte JP, Teske JP, Arnosti C. Structure and function of
high Arctic pelagic, particle-associated and benthic bacterial
communities. Environ Microbiol 2018;20:2941–54.

Barberán A, Casamayor EO, Fierer N. The microbial contribution
to macroecology. Front Microbiol 2014;5:1–8.

Biddanda BA. Global significance of the changing freshwater car-
bon cycle. Eos 2017;98:EO069751.

Battin TJ, Besemer K, Bengtsson MM et al. The ecology
and biogeochemistry of stream biofilms. Nat Rev Microbiol
2016;14:251–63.

Bell T. Next-generation experiments linking community struc-
ture and ecosystem functioning. Environ Microbiol Rep
2019;11:20–22.
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