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Abstract 

Approximately one-third of patients diagnosed with focal epilepsy do not respond to 

medication and may be candidates for surgery to remove epileptogenic tissue known as the 

epileptogenic zone.  A detailed pre-surgical evaluation is required and often includes invasive 

video electroencephalographic monitoring (IVEM) using intracranial surface and depth 

electrodes, and a camera.  The resulting large pools of electrocorticorticographic (ECoG) data 

are manually analyzed by an expert epileptologist to determine epileptic events.  The process is 

time consuming and prone to human error.  This thesis investigates the use of measures to 

identify the causal relationship between ECoG signals during propagation of a seizure in order to 

delineate a possible epileptogenic zone.  These measures are based on concepts of network 

connectivity derived from the frequency spectrum of recorded signals called the spectrum-

weighted directed transfer function (swDTF) and the full-frequency directed transfer function 

(ffDTF).  The goal of the thesis is to implement a measure that may aid the surgeon in the 

decision-making process to optimize the outcome of surgery and possibly minimize the resection 

volume.  

A time-variant adaptive version of both the swDTF and ffDTF was applied to a simple 

simulation model.  The adaptive swDTF achieved higher sensitivity than the ffDTF (93% vs. 

86%) for the detection of epileptogenicity.  Both measures achieved a specificity of 99%.  Two 

time-variant versions of the swDTF were compared: 1) an adaptive approach to frequency 

spectrum estimation using a Kalman filtering algorithm and 2) a short-time spectral estimation 

approach using overlapping Hamming windows.  Each method was successfully applied to a 

simple simulation model. The measures were then applied to electrodes of clinical ECoG data 

obtained from Spectrum Health’s Epilepsy Monitoring Unit.  Sixteen seizures in two patients 

were analyzed and compared to channels indicated as having seizure activity by the 
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epileptologist.  The adaptive approach was able to identify the electrodes containing seizure 

activity consistent with expert findings (within 10 mm) in 14 out of 16 (88%) seizures. The 

short-time approach was able to identify an area within the region of interest (within 30-100mm) 

as noted by the epileptologist in 12 out of 16 (75%) seizures.  The short-time swDTF reduced 

computation time by 95% compared to the adaptive approach.  The short-time approach is more 

susceptible to noise and appears to be less selective whereas the adaptive approach is better able 

to pinpoint a single channel (± 10 mm).  The adaptive measure is preferred due to its robustness 

to input parameters and ability to pinpoint channels.  It is suggested that the short-time approach 

be used to gain quick insight into the region of interest identified by the 3-10 electrodes with the 

largest elevated output values and to later isolate single electrodes using the adaptive measure.    
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1. Introduction 

Epilepsy is one of the most common neurological disorders and affects 65 million 

people around the world.  It is defined as a neurological disorder marked by sudden recurrent 

episodes of sensory disturbance, loss of consciousness, or convulsions, associated with 

abnormal electrical activity in the brain.  Approximately one-third of patients suffering from 

epilepsy are diagnosed with refractory epilepsy
1
.  Refractory epilepsy is a type of epilepsy 

that does not respond to anti-epileptic drugs (AEDs).  An option for patients suffering from 

refractory epilepsy is surgery.   In several cases, a procedure known as invasive video 

electroencephalographic (EEG) monitoring (IVEM) is used to locate a possible epileptogenic 

focus for resection.  The electrocorticogram (ECoG) is a derivative of the typical EEG using 

intracranial electrode arrays implanted on the cortex.  The video component of IVEM allows 

for correlation of events in the ECoG signal with observed clinical symptoms.  Typically, the 

IVEM procedure is performed 24 hours a day for 1 to 14 days.  The resulting large pools of 

ECoG recordings are visually inspected by an expert in epilepsy (epileptologist).  This 

method is time consuming and prone to human error due to the vast amount of data and 

underlying signal characteristics not apparent by visual inspection.  Applying signal 

processing techniques will not only drastically improve analysis time but may aid the 

surgeon in the decision process so that the success rate of surgery can be maximized and the 

volume of resected tissue minimized. 

The aim of this thesis is to investigate the application of a quantitative computational 

technique that could serve as an adjunctive tool for use with visual analysis of the ECoG.  

The method uses the concepts of network connectivity to explore causal relationships 

between ECoG signals in the frequency domain.  Network connectivity is the idea that 

information spreads across various functional areas of the brain
2,3

.  It is believed that during 
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an epileptic seizure, epileptic activity begins in a particular region of the brain and spreads 

across different regions over time.  This pattern of propagation can be used to delineate the 

epileptogenic focus by applying measures of information flow (connectivity).  This thesis 

will employ a multivariate directional connectivity measure known as the time-variant 

directed transfer function (DTF)
4
.  This measure investigates the direct and indirect 

directional information flow between multiple EEG signals in the frequency domain.  Due to 

the stochastic, non-stationary nature of an epileptic EEG signal, the measure must be 

repeated over short time duration intervals during which the signal may be considered 

pseudo-stationary. A normalized version of the time-variant DTF known as the spectrum-

weighted DTF (swDTF) introduced by van Mierlo et. al
1
 is applied in this thesis.  The time-

variant swDTF provides a gauge for the connectivity of a particular site with other sites over 

the course of an epileptic seizure.  The measure can be estimated in a variety of ways.  This 

thesis estimates the time-variant swDTF using two different methods: 1) short-time multi-

variate autoregressive models (MVAR)
5,6

, and 2) adaptive MVAR models using a Kalman 

filtering algorithm
1,7,8

.  The ability and feasibility of the two methods to estimate the time 

dependent swDTF are compared and contrasted.   

The methods were validated using large pools of ECoG data provided by Spectrum 

Health’s Epilepsy Monitoring Unit (EMU).  The ECoG of two patients suffering from 

refractory focalized epilepsy was recorded at a sampling rate of 1000Hz for twenty-four 

hours a day over a two-week period via 72 intracranial electrodes implanted on the cerebrum.  

The data was annotated by an epileptologist.  All recordings, annotations, and other 

information from the EMU were scrubbed by Spectrum Health to remove all patient 

information before being obtained.  The annotations for each seizure included electrode sites 
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of interest that were visually considered a candidate for a potential epileptogenic focus.  

These channels of interest were compared to the potential epileptogenic focus indicated by 

the resulting time-variant swDTF measure for each seizure.   

  



13 
 

2. Literature Review 

2.1 The Electroencephalogram (EEG) 

2.1.1 Overview of EEG 

 Electroencephalography (EEG) indicates the electrical activity of the brain and is 

considered by many to be the most complex set of signals in nature.  This complexity is 

evident by observing the sample EEG signals shown in Figure 2.1.1.  The figure presents 

a seven channel (channels 38-44 located in the left medial temporal lobe), five second 

segment of non-epileptic EEG data from the EMU sampled at 1000Hz.  For a list of 

detailed anatomical locations of all electrode numbers mentioned in this thesis, refer to 

Appendix B.   Please note that adjacent channels are likely to be very close to one another 

in terms of electrode site on the cerebrum.  The electrical activity of the brain is the result 

of ionic current flows throughout the roughly one-hundred billion neurons contained 

within it
9
.  This current is mostly due to a summation of synaptic potentials that conduct 

to the scalp, and measured with scalp electrodes or the surface of the cortex where they 

are measured with intracranial electrodes (as in Figure 2.1.1).   

 

Figure 2.1.1: Electroencephalogram (EEG) Signals 
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The most common method of recording the EEG is via scalp electrodes arranged 

in the standard 10-20 placement system as devised by the International Federation of 

Societies for Electroencephalography due to the non-invasive nature of the procedure.  

The standard 10-20 placement system
9
 of electrodes is shown in Figure 2.1.2 below. 

 

Figure 2.1.2: 10-20 Placement System for EEG 

 Scalp EEG recordings suffer from two major problems: 1) source localization and 2) 

presence of artifacts.  Because potentials underlying the EEG are generated 

predominately on the surface of the cortex and propagated to the scalp surface for 

measurement, the signal at the surface is the summation of many synaptic potentials.  

One surface electrode may detect the activity of up to a billion cortical neurons
9
.  This 

makes it extremely difficult to pinpoint the exact source of a particular signal of interest.    

The presence of artifacts is also a major problem because scalp potentials are very low 

amplitude, only ranging from 10µV to 100µV.  These small amplitudes are easily 

influenced by muscular and ocular artifacts.  Muscle artifacts are due to the electrical 

activity of the muscles and are a result of muscle contractions.  These muscle artifacts 

have amplitude approximately ten times that of the EEG.  Ocular artifacts are due to the 
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electrical activity of the eyes and although they have a lower amplitude than the EEG 

they can still influence the signal, particularly during blinking of the eyes.     

Another option for recording the EEG is via intracranial electrode arrays placed 

directly on the cerebral cortex.  This type of EEG is referred to as the 

electrocorticography (ECoG) and involves a highly invasive procedure.  The primary 

benefit of ECoG over scalp EEG is the ability to record electrical activity much closer to 

the source.  This essentially eliminates the source localization problem and susceptibility 

to noise artifacts discussed above.  Another benefit is the large increase of signal strength 

with respect to noise and artifacts as the signals do not have to propagate through the 

many layers separating the cortex and scalp (i.e., on-site surveillance).  

2.1.2 Clinical Use of EEG 

The EEG has been used clinically for nearly 80 years since its origination by Hans 

Berger, a German psychiatrist, in 1924.  Since its introduction, little has changed 

conceptually about the EEG aside from experience, recording hardware, and the speed 

and power of the computational tools used to analyze it.  EEG signals have been used to 

investigate many neurological diseases including sleep disorders, psychological 

disorders, cerebrovascular lesions, tumors, and epilepsy
9,10

.  Due to the non-stationary, 

chaotic, and non-linear nature of the EEG, gaining information by direct visual analysis 

is very difficult and advanced signal processing techniques can provide significant 

insight.  Although the EEG appears random in nature, it contains useful information 

regarding the state of the brain and thus has clinical value.   
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2.2 Epilepsy 

2.2.1 Seizure 

The Epilepsy Foundation reports that 1 in 10 Americans have had a seizure
11

.  A 

seizure is caused by abnormal electrical activity in the brain, specifically excessive 

synchronous neuronal activity
12

.  An example of this excessive synchronous activity can 

be seen in channels 38-42 shown in Figure 2.2.2.  This figure shows a five second 

segment of channels 38-44 recorded in the EMU during an epileptic seizure.  Note that 

not all channel exhibit this synchronicity (channels 43 and 44 on grid E in the 

subtemporal region in Figure 2.2.2) as not all parts of the brain are being affected by this 

particular seizure. The brain is controlled by a series of chemical reactions that result in 

excitatory or inhibitory discharges.  When the balance of these discharges is moved too 

far toward an excitatory level, a seizure can occur.  

 

Figure 3.2.2: Abnormal Synchronous EEG Activity during Seizure 

There are two main categories of seizures: 1) partial (focal) and 2) generalized
12

.  

A simplified version of the international classification of seizures is shown in Table 2.2.1 



17 
 

below.  It is important to note that the site of abnormal electrical discharges determine the 

effect the seizure has on the patient.  

Table 4.2.1: Classification of Seizures 

Partial (Focal) Seizures 

    Start at particular focal point in cortex 

  Sensory (e.g., phantom smells) 

  Motor (e.g., twitching) 

  Sensory-Motor 

  Memory 

Generalized 

    Start on both sides of brain 

  Absence (petit mal)  

   Sluggish, sleepy, confused 

  Tonic-Clonic (grand mal)  

   Loss of consciousness, 

Stiffening (tonic) followed 

by jerking (clonic) 

Secondarily Generalized 

    Partial (Focal) seizure that spreads into generalized 

 

 A Partial or Focal seizure occurs in a particular location of the cortex.  If the 

seizure occurs in the motor cortex, the patient may experience jerking or stiffening.  

Seizures occurring in the cortex serving sensory appreciation may result in phantom 

smells, visual changes, and tactile sensations.  In contrast, generalized seizures typically 

involve the entire brain and may lead to loss of consciousness and tonic-clonic behavior.  

A seizure may begin as a focalized seizure and spread to the rest of the brain, resulting in 

a tonic-clonic seizure.  This is known as a secondarily generalized seizure. 

The physiologic state of a seizure is referred to as the “ictus” or “ictal” period.  

Consequently, the time periods immediately before, during, and after a seizure are 
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respectively denoted as the pre-ictal, ictal, and post-ictal periods.  The period between 

seizures is referred to as the inter-ictal period wherein sporadic discharges provide a 

signature of anomalous behavior.  

2.2.2 Epilepsy 

The terms epilepsy and seizure are often and incorrectly used interchangeably.  It 

is important to note that a seizure is a symptom of epilepsy and that one seizure is not 

considered epilepsy.  Epilepsy is a chronic neurological disorder characterized by the 

manifestation of hypersynchronous neurological firing resulting in recurrent and 

spontaneous epileptic seizures
12,13

.   Epilepsy symptoms and etiology differ for each 

individual and, similar to a seizure, epilepsy can be referred to as partial (focal), 

generalized, or secondarily generalized. In the case of partial (focal) epilepsy, the region 

of the brain generating the epileptic seizures is termed the epileptogenic zone
12

.   

According to the Epilepsy Foundation, epilepsy is the fourth most common 

neurological disorder in the U.S. behind migraine, stroke, and Alzheimer’s disease
11

.  

Epilepsy affects 2.2 million Americans and 70 million people worldwide with 45 people 

per 100,000 developing new-onset epilepsy each year
14

.   

2.2.3 Epilepsy Surgery 

The prognosis of epilepsy is generally good.  Approximately two-thirds of 

patients are rendered seizure free by treatment with antiepileptic drugs (AEDs).  

Although the number of AEDs is growing, one-in-three of those diagnosed do not 

respond to AEDs and continue to experience seizures with varying degrees of frequency 

and severity
14

.  These patients suffer from refractory epilepsy.   Commonly used options 

for treating those suffering from refractory epilepsy include vagus nerve stimulation, 
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deep brain stimulation, the ketogenic diet, and epilepsy surgery
13,14

.   Epilepsy surgery 

can be divided into two different procedures: 1) resective surgery leading to complete 

removal of the epileptogenic focus or 2) disconnective surgery leading to cutting of 

nerve bundles to prevent spreading of seizure activity
13

.  

Only a few thousand epilepsy surgeries are performed each year due to limitations 

in knowledge regarding the root cause of epilepsy, availability of resources, cost, and 

strict criteria
14

.  Common criteria that must be met by candidates for epilepsy surgery 

according to the Epilepsy Foundation are summarized in Table 2.2.2
11

.     

Table 5.2.2: Epilepsy Surgery Candidate Criteria 

Criteria 

    Diagnosis of epilepsy is secure 

    Failure of at least two AEDs in controlling seizures 

    Onset site can be localized (Focal epilepsy) 

    Epileptogenic Focus can be safely removed 

    Understanding of benefits/risks and desires surgery 

 

Localizing the epileptogenic focus is a difficult task. A variety of modalities are 

used including magnetic resonance imaging (MRI), positron emission tomography 

(PET), and EEG
14

.  MRI provides a structural image of the brain and can show 

underlying causes of seizures including abnormal blood vessels, tumors, etc..  PET 

shows glucose consumption of the brain.  The region of the brain that includes the 

epileptogenic focus often shows low glucose consumption
14

.  EEG is the most commonly 

used technique because of its availability and ability to monitor the electrical activity of 

the brain.  The presence of abnormal electrical activity is important in determining the 

epileptogenic focus
14

.  An important technique involving EEG is known as invasive 
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video-EEG monitoring (IVEM).  Thin contacts and wires organized into strips or grids 

are inserted (intracranially) into a region of the brain that is suspected to contain the 

epileptogenic focus.  These may be on the surface of the cortex or within deeper layers 

(depth electrodes).  Patients are monitored in a hospital epilepsy monitoring unit (EMU) 

from 5 to 14 days and are gradually weaned off their anti-epileptic medication in order to 

provoke seizures for recording purposes.   

The resulting large pools of intracranial EEG data are visually analyzed by an 

expert in epilepsy (epileptologist) and the epileptogenic focus is delineated.  Memory 

and psychological tests are performed as well as MRI or CT scans to determine if the 

epileptogenic focus can be removed (or even reached) without severe loss of function.  

Upon completion of the pre-surgical evaluation, discussion between patient and doctor 

ultimately determines whether to proceed with surgery.   

The outlook after epilepsy surgery is generally good but there is certainly room 

for improvement.  According to the Epilepsy Foundation, a study published in the New 

England Journal of Medicine showed that after 1 year, 58% of patients who had 

undergone surgery had not experienced a seizure that impaired consciousness and 38% 

had not experienced any seizure
11

.    

2.3 Signal Modeling 

2.3.1 Multivariate Autoregressive Modeling (MVAR) 

Signal modeling is a way to represent a signal via model parameters that can be used 

to reveal information (for prediction, reconstruction, etc.) that is not apparent in the 

current state of the signal. The autoregressive model (AR) is a generic model that is used 

to represent a time series of signal samples, specifically time-varying processes in nature 
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such as the EEG.   An autoregressive model of order   expresses an         time series 

 ( ) as a linear combination of past observations  (   )                 ( ), 

  ( )   ∑    (   )   ( )

 

   

 (Eq.  1) 
 

where   is the     autoregressive coefficient.  The model order   is also referred to as 

the maximum delay or lag of the model as it determines the number of past samples used 

in modeling the signal.  The parameters of the AR model can be estimated by methods 

such as Yule-Walker or Least Squares
15

. 

The AR model can be extended to a multivariate case consisting of   time series, 

  ( )     ( )     ( ) .  This is known as the multivariate autoregressive model 

(MVAR) and is defined as: 

 [
  ( )

 
  ( )

]   ∑   [
  (   )

 
  (   )

]  [
  ( )

 
  ( )

]

 

   

 (Eq.  2) 
 

where                  autoregressive coefficient matrix for order  7
.  The MVAR 

model is time-invariant and assumes stationary and constant interactions between signals 

over time.  This is not the case of the EEG, especially during an epileptic seizure.  A 

time-varying MVAR model must be generated in order to effectively model these signals.    

2.3.1.1 Adaptive Multivariate Autoregressive Models 

The MVAR model can be adapted for use with non-stationary multivariate time 

series by allowing the autoregressive coefficient matrices    to vary in time (i.e., 

     ( )) where 
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   ( )   [
   

 ( )     
 ( )

   
   

 ( )     
 ( )

]  (Eq.  3) 
 

This time-varying extension of the MVAR is known as the adaptive MVAR model.  

The methods for estimating parameters of the AR model mentioned earlier (Yule-

Walker and least squares) are not appropriate in this multivariate adaptive case 

because there exist more unknown parameters than data points
13

.  One way to 

estimate these coefficients is by using a Kalman filtering algorithm.   

 The Kalman algorithm represents a signal model in state-space form.  This model 

consists of a state equation and an observations equation.  The observations equation 

is given in Eq. 1 and the state equation is simply stated as: 

   ( )    (   )    (   ) 
 

(Eq.  4) 
 

where    is the covariance matrix of  process noise   
8
.  The state-space equations 

are solved using a recursive prediction algorithm followed by an update step
4
.  The 

update step is controlled by the update coefficient (UC).  The UC is a constant value 

set a priori and ranges from 0 to 1.  The larger the value of the UC, the quicker the 

model adapts to changes in the data.  The lower the UC, the more robust the 

estimate
13

.  The resulting adaptive MVAR model is capable of simultaneous 

modeling of extremely non-stationary components of a signal, including the 

collection of signals that are the EEG electrode recordings.   

2.3.1.2 Short-Time Multivariate Autoregressive Models 

Estimating an adaptive MVAR model via the Kalman filtering algorithm is a 

complicated and computationally intensive approach that may be considered overkill 
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in some cases, especially when dealing with signals that may be considered stationary 

over short periods of time.  In these cases, a short-time (ST) MVAR model using the 

short-time Fourier transform (STFT) may be appropriate.  This method has been 

successfully applied to newborn EEG signals to calculate time-varying cortical neural 

connectivity
5
.  When computing a STFT, a symmetric sliding window is used to 

reduce spectral leakage at the edges of the signal (i.e., edge effect).  Most often, bell 

shaped windows such as Hamming or Blackman are employed.  The windows will 

often overlap by 50% when sliding to yield better time-frequency resolution. The ST-

MVAR model is computed by dividing each signal   ( ) into short overlapping 

segments that are then windowed using the Hamming window.  The signal is assumed 

stationary within the short window and the time-invariant MVAR coefficient matrices 

  are estimated within the window.     

Due to the nature of the windowing approach, the smoothness and continuity of 

connectivity measure derived from the short-time approach are inferior to that of the 

adaptive approach
5
.  This is because the measure is only estimated one time within 

the window using the short-time approach instead of being estimated at every time 

point using the adaptive approach.  Because of the delay that is inherent in the 

Kalman filtering algorithm as a result of the updating step, the short-time approach is 

able to more accurately localize events in time.  The major drawback of the ST-

MVAR approach is the assumption of a stationary signal within the window, which 

may not be the case
5
.    
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2.4 Network Connectivity 

2.4.1 Overview of Network Connectivity 

The idea that different brain functions are achieved by communicating across, and 

interacting with, various regions (areas) of the cerebral cortex is known as network 

connectivity or brain connectivity.  Assessing network connectivity allows one to 

measure this integration of cerebral areas in the brain.  Network connectivity can be 

divided into three different groups: structural, functional, and effective connectivity
2
.  A 

summary of the three groups is provided in Table 2.4.1 and Figure 2.4.1.   

Table 6.4.1: Types of Network (Brain) Connectivity 

Connectivity Definition Examining Modalities 

Structural 

Connectivity between fiber 

pathways tracking over regions 

of the brain 

Magnetic Resonance 

Imaging (MRI), Diffusion 

Tensor Imaging (DTI) 

Functional 

Temporal correlations among 

different neural areas, 

dependence between brain 

regions 

EEG, Local Field Potentials 

(LFP), 

Magnetoencephalography 

(MEG), Positron Emission 

Tomography (PET), 

Functional MRI (fMRI) 

Effective 

Direct or indirect influence that 

one neural system exerts over 

another 

Estimated directly from 

signals (data-driven), based 

on models specifying causal 

linkage 

 

 

               Figure 7.4.1: Network (Brain Connectivity Diagrams)
2
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Figure 2.4.1 shows a graphical representation of the three types of connectivity.  The 

numbers in the boxes represent electrode sites corresponding to EEG signal traces.  The 

arrows represent the connectivity pattern between the various electrode sites (in this 

example, electrodes 34, 41, 42, and 44).   

Structural connectivity is very difficult to calculate due to the dynamic nature of 

synaptic interactions (i.e., the number and connections of neurons are constantly 

changing in the brain).  Techniques such as the EEG are ideal for estimating functional 

and effective connectivity because of the high temporal resolution
2
.  Since the EEG can 

be recorded at high sampling frequencies (in this case 1000Hz), the direction of 

information exchange and movement via functional and effective connectivity within the 

brain can easily be traced over time by analyzing delays between electrodes.    This is 

useful when investigating the direction of communication between neural signals. 

2.4.2 Measures of Network Connectivity 

Network connectivity has been investigated since the early 1960s but effectively 

and accurately quantifying this connectivity remains a problem
2
.  Because of this, many 

methods have been developed to quantify both effective and functional connectivity.  

One of the original techniques for estimating effective connectivity is Granger-causality 

(GC).  GC is a data-driven technique because it does not assume any prior knowledge or 

underlying model to estimate the connectivity.  The measure is based on the idea that 

causes precede effects in time
2
.  Essentially, a signal   Granger-causes (or G-causes) a 

second signal   if   can better be predicted using past information from   than past 

information from   alone
13,2

.  
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GC is a time-domain measure initially developed by Granger in 1969 to analyze 

the relationships underlying econometric models
16

.  Granger-causality has more recently 

become popular in neuroscience following the development of the spectral G-causality 

using Fourier methods by Geweke in 1982
17

.  Intuitively, spectral GC measures the 

fraction of total power at a particular frequency of   that is contributed by  .  Spectral 

Granger-causality has led to the development of closely related alternative measures such 

as the partial directed coherence (PDC)
18

 and the directed transfer function (DTF)
19

, both 

of which have been used in regards to epilepsy and delineating the epileptogenic 

focus
18,19

.  These methods are discussed in the following sections.       

2.4.2.1 Partial Directed Coherence 

The Partial Directed Coherence (PDC) is a derivative of the most commonly used 

connectivity measure, coherence.  Coherence was introduced in 1968 to estimate 

connectivity between EEG signals
20

.  Coherence can be used as a measure of the 

consistency (or synchronization) of phase angles between two signals and can be 

loosely considered as a frequency-domain equivalent to cross-correlation
13,21

.   

One of the major problems with coherence is that it is only a bivariate measure (it 

is only capable of considering two signals at a time).  When analyzing information 

flow in the brain, it is important to consider all channels at once using a multivariate 

measure.  The Partial Coherence (PC) is a multivariate extension of coherence that 

differentiates between direct and indirect relationships between signals by removing 

the influence of all other channels in the system
13,18

. 

Yet another problem present in both the coherence and partial coherence is the 

lack of directionality.  In other words, coherence and PC only describe mutual 

synchronicity between signals and do not reveal the direction of the information flow.  
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This led to the development of the partial directed coherence which considers the 

temporal relationship (i.e., the time delay) between signals in order to reveal the 

direction of information flow
18

.         

2.3.2.2 Directed Transfer Function (DTF) 

The Directed Transfer Function (DTF) is a multivariate, directed measure 

capable of extracting the directional information flow between various signals
22

.  The 

DTF has been shown to be a multivariate frequency domain equivalent to Granger 

causality
6
.  The spectral transfer function  ( ) of an autoregressive modeled signal 

 ( ) is computed by taking the inverse of the Fourier transformed MVAR 

coefficients, 

  ( )     ( )              ( )    ∑    
      

 

   

 (Eq.  5) 
 

and   is equal to the        identity matrix
13,6

.  The transfer function can be 

extended to the multivariate time-variant case by computing Equation 5 for the 

multivariate adaptive or short-time coefficients   ( ).  The resulting transfer 

function is of the form    
(   ) and represents the connection between the            

signals at frequency   and time  .  The time-variant directed transfer function is the 

square of the absolute values of    
(   ) and may be normalized with respect to the 

incoming information flow: 

      (   )   
|   (   )|

 

∑ |   (   )|  
   

   (Eq.  6) 
 

Thus,      (   ) represents the causal information flow from signal   to signal   at 

frequency   and time  .  The values of the time variant     range from [0, 1].  A 
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value of 1 indicates that all of signal   is the result of information flowing from signal 

  at that particular frequency and time.  A value of 0 indicates that no flow of 

information is occurring from signal   to signal   at that particular time and 

frequency
13

.   

2.3.2.3 Full-frequency & spectrum-weighted DTF (ffDTF & swDTF) 

One problem present in the adaptive DTF (ADTF) and the short-time DTF 

(ST-DTF) is that neither measure takes into account the power spectrum of the 

signals.  This means that each frequency considered in the measure is equally 

important.  Prioritizing frequencies by their power is useful for identifying those 

frequencies playing an important role in the signal.  This led to the introduction of the 

full-frequency directed transfer function (ffDTF) by Korzeniewska
23

.  The ffDTF can 

be time invariant (ffDTF), adaptive (ffADTF), or short-time (ffST-DTF) depending on 

the type of MVAR model used to fit the data.  Each time point of the time-variant 

DTF is normalized by the frequency content in the frequency band considered 

       : 

        ( )  
∑ |   (   )|

   
    

∑ ∑ |   (   )| 
  
    

 
   

   (Eq.  7) 
 

The sum of incoming information flow into a channel from all other channels at a 

particular time is equal to one
13,23

.   

 A problem present with the ffDTF is the tendency for    (   ) to be high when 

there is no power in the spectrum of the sending signal.  This led to the introduction 

of the spectrum-weighted directed transfer function (swDTF) which is a modified 
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version of the ffDTF weighted by the autospectrum of the sending signal,  1
.  The 

time-variant swDTF is defined as:  

        ( )  
∑ |   (   )|

 
∑ |   (   )|

  
   

  
    

∑ ∑ |   (    )| 
  
     

 
   ∑ |   (    )|

  
   

   (Eq.  8) 
 

As with the ffDTF, the swDTF is normalized so that the sum of incoming information 

flow into a channel at a particular time point is equal to 1.  The swDTF additionally 

weights outgoing information by the autospectrum of the sending signal,  .  

 All methods and concepts discussed in this literature review will be applied to 

clinical ECoG data to quantify the location of the epileptogenic zone according to the 

specific aims of the thesis discussed in the following section.   
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3. Specific Aims 

 

Visually analyzing the large pools of ECoG data recorded during an video 

electrocorticographic monitoring procedure (IVEM) is problematic for reasons including 

analysis time and accuracy.  This thesis introduces a computational technique that can be 

used as an adjunctive tool to alleviate these problems.  The computational tool is an 

automated algorithm which uses network connectivity measurements, specifically the time-

variant spectrum-weighted directed transfer function (swDTF), to delineate the epileptogenic 

focus. The process can be broken down into six steps: 1) normalization and extraction of 

segment of epileptic ECoG data 2) fitting of multivariate autoregressive model (MVAR) for 

extracted data 3) estimation of time-variant transfer function from MVAR coefficients 4) 

normalization of time-variant transfer function to estimate time-variant swDTF 5) setting of 

uniform threshold (99.9 percentile of swDTF values) to determine significant values of time-

variant swDTF and 6) generation of “connectivity histogram” by summing across time and 

outgoing information flow.  The channel with the largest histogram value may be indicative 

of the epileptogenic focus for the particular seizure. 

Two methods for estimating the time-variant MVAR model will be utilized and 

compared: 1) short-time MVAR model and short-time swDTF (swST-DTF) using 

overlapping hamming windows and 2) adaptive MVAR model and adaptive swDTF 

(swADTF) using a Kalman filtering algorithm.  The methods are first compared and verified 

using a simple simulation model consisting of four channels (simulating four electrodes).  At 

a particular time, a non-stationary sinusoid buried in uncorrelated white noise begins in a 

particular channel and later spreads to other channels in the model.  The simulation is 

expanded to sixteen channels and the methods will again be verified.  The sensitivity and 
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specificity of the connectivity measures for the simulation will be calculated by comparing 

the intrinsic connectivity of the simulated model at each time point with the calculated 

connectivity.  The sensitivity is the ability of a measure to identify positive results (e.g., 

when there is a connection) and the specificity is the ability of a measure to identify negative 

results (e.g., when there is no connection)
13

.  These statistical measures are defined in 

equations 9 and 10.    

             
              

                              
 (Eq.  9) 

 

 

             
              

                              
 (Eq.  10) 

 

The measures will then be applied to ECoG data of two patients from Spectrum Health’s 

Epilepsy Monitoring Unit (EMU).  Both the swADTF and swST-DTF will be applied to each 

seizure for each patient.  The output of each measure will be displayed in two ways: 1) a 

histogram showing the total reinforcements over time of all connections from a particular 

channel to all other channels and 2) an image plot showing the relationship (i.e., reinforced 

connections over time) between each pair of channels as a heat map (red color indicates 

strong connected relationship from a signal j to a signal i, blue indicates week connected 

relationship from a signal j to a signal i).  The channel with the highest histogram value is the 

channel that is influencing (i.e., connecting with) other channels the most during onset of the 

seizure and is indicative of the epileptogenic focus.  The results will be compared to channels 

of interest noted by the expert epileptologist.   
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4. Methodology 

4.1 Software Overview 

The software implemented in this thesis is performed in three major steps: 1) Fitting of 

time-variant MVAR model to simulated or clinical ECoG data and obtaining the time-variant 

frequency domain transfer function 2) Normalization of transfer function to obtain time-

variant swDTF and 3) Thresholding swDTF values and summing over time to determine the 

total reinforcements of a connection caused by a channel (displayed as a histogram).  The 

methods were applied to both a simple simulation model and ECoG data recorded in the 

EMU.  All customized software was written in the MATLAB R12 (Mathworks, Natick, MA) 

environment.  The open-source package EEGLAB was used to import, manage, and display 

the ECoG recordings.  EEGLAB was developed by the Swartz Center for Computational 

Neuroscience (SCCN) and is distributed under the GNU General Public License.  The BioSig 

toolbox is an open source software library for biomedical signal processing and is also 

distributed under the GNU General Public License.  Some functions implemented in the 

BioSig toolbox for MATLAB were used to generate the MVAR coefficients using a 

multidimensional Kalman filter algorithm.   

4.2 Generating Model 

4.2.1 Adaptive Approach  

The MVAR model is the first major signal processing step performed.  The time-

variant coefficients of the MVAR model are generated using the mvaar() function from 

the BioSig toolbox.  The mvaar() function estimates the MVAR model based on a 

multidimensional Kalman filter algorithm.  An optimal order of p=10 for the MVAR 

model was determined using the ARFIT MATLAB package.  The ARFIT MATLAB 

package estimates parameters for MVAR models using an empirical approach that 
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determines optimal model order by minimizing error in the model
24

.   The update 

coefficient (UC) of the Kalman algorithm was set to UC = 0.001 as recommended by 

literature and the mvaar() function
13

. 

The time-variant frequency domain transfer function from channel j to channel i at 

time t and frequency f,     
(   )  was obtained from the MVAR coefficients   ( ) using 

Equation 5.  The Fourier Transform was computed from 1-30Hz over N=30 bins, 

providing a frequency resolution of 1Hz.  These numbers are consistent with 

recommendations in the literature
1,5,7,13

.     

4.2.2 Short-Time Approach  

The time-variant MVAR coefficients are generated by dividing the signal of interest 

into short segments, windowing each segment by a Hamming window,  and computing 

time-invariant MVAR coefficients within the window.  The signal is assumed stationary 

within the window.  The time-invariant coefficients were estimated using the mvar() 

function included in the BioSig toolbox.  The mvar() function computes the MVAR 

coefficients using a Nutall-Strand unbiased partial correlation estimation
24

.  The window 

length was empirically chosen to be 100ms as it proved to offer the best balance between 

temporal and frequency resolution after varying the window size from 50-1000ms.  The 

100ms windowed segments overlapped by 50%.  The window is shifted and the time-

invariant MVAR coefficients are calculated within each window.  This collection of 

time-invariant MVAR coefficients is used to compute the time-variant transfer function 

   
(   ) in the same manner described in the previous section.  The only difference is 

that the time variable t represents the transfer function value for the 50ms time window 

instead of the individual time point in the adaptive case.         



34 
 

4.3 Obtain time-variant swDTF Output 

The time-variant        ( ) from channel j to channel i at time t was calculated by 

normalizing the values of the transfer function    
(   ) using Equation 8 over a frequency 

range of 5-30 Hz as recommended in the literature
13

.  A threshold was chosen by finding the 

99.9 percentile of all        ( ).  This threshold was used to determine significant 

connections by comparing the value of        ( ) at each t to the threshold.  If the value 

        at time t exceeds the threshold, a significant connection is recorded from channel j 

to channel i at that time t.  This method is repeated across all time t to determine the 

“reinforcements of connections” between channels j and i.  The “reinforcements of 

connections” therefore equals the number of computed         values that exceeded the 

99.9 percentile threshold across all time t. Please note that the threshold used to calculate the 

number of “reinforcements of connections” for each measure is calculated using the values of 

that particular measure (e.g., the threshold for the short-time swDTF is based off of values of 

the short-time swDTF). While this method does mean that there will always be at least one 

significant connection, it is important to clarify that the primary interest is in the channels 

with the most significant connections rather than the total number of significant connections. 

The number of reinforcements of that connection was summed across all time and all 

receiving channels i for each sending channel j.  This shows the total number of 

reinforcements of a connection over time a particular channel j is causing.   

The output is plotted as a series of two plots.  The first plot is a histogram showing the 

sending channel j on the x-axis and the total number of reinforcements of connections to all 

other channels i over all time t on the y-axis.  The second plot is a heat-map style image plot 

which shows the relationship between each pair of channels over all time.  Each pixel 
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represents a relationship between a pair of channels with the sending channel j on the x-axis 

and the receiving channel i on the y-axis.  This plot provides insight into which areas of the 

brain the sending channel is influencing (causing the most connections in) rather than simply 

the total number of reinforcements of a connection a channel is causing in all other channels.  

The sending channel j with the largest histogram value is indicative of a region that may be 

highly epileptogenic.   

4.4 Simulation Model 

A simulation model was generated to test the time-variant       methods.  The results 

using the adaptive and the short-time approach were compared.  The model was also used to 

compared the ffADTF (Eq. 7) and the swADTF.  The sensitivity (Eq. 9) and specificity (Eq. 

10) were calculated for each method.   

The simulation model consists of four signals representing four electrodes in the brain.  

At time t=0s, a non-stationary (12Hz at t=0s decreasing to 8Hz at t=3s) sinusoid with 5dB 

signal to noise ratio (SNR) begins in channel 1 of the simulation model.  Prior to time t=0s, 

all channels contain uncorrelated white noise.  At time t=125ms, the signal is passed from 

channel 1 to channel 2.  At time t=250ms, the signal was passed from channel 2 to channel 3.  

And at time t=375ms, the signal was passed from channel 2 to channel 4.  The simulation 

model is shown below in Figure 4.4.1 and is described in further detail by van Mierlo et. al
13

.  
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Figure 8.4.1: Four Electrode Simulation Model 

 

The simulation model was expanded to sixteen channels to better model the complexity 

of neural system and recording electrodes present in the clinical data.  The sixteen channels 

were randomized.  Four channels contained the same propagation sequence of the simulated 

seizure shown in Figure 4.4.1.  The remaining twelve channels contained uncorrelated white 

noise.  The short-time and adaptive swDTF were once again computed and compared.  All 

results are presented in section 5 of this paper.   

4.5 Applying to ECoG recordings 

All ECoG data was obtained with permission from Spectrum Health’s Epilepsy 

Monitoring Unit (EMU) in Grand Rapids, MI.  As described in Section 2.2.3, epilepsy 

surgery requires a comprehensive pre-surgical program where the patients may be subject to 

continuous video-ECoG monitoring.  The data used in this study come from two patients 

recorded suffering from focalized epilepsy.  The ECoG was recorded at a 1000Hz sampling 

rate for twenty-four hours a day over a two-week period via 72 intracranial electrodes 

implanted on the cerebrum.  The anatomical locations and grid layout of the electrodes for 

Patient 2 are included in detail in Appendix A. The data was annotated by an epileptologist.  
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Over the two week period, Subject 1 experienced a total of five seizures and Subject 2 

experienced a total of fifteen seizures.  These annotations include the start and stop times of 

the particular seizure.   

A twenty-second segment of data for each seizure was analyzed.  Because of the interest 

in studying the initial propagation of ictal activity, the twenty second segment of data 

included five seconds prior to onset and fifteen seconds post onset of the epileptic activity.  

The data was imported into MATLAB from a European Data Format (EDF) file using 

EEGLAB and the BioSig toolbox.  Each EDF file contains two-hours of data.  The twenty-

second segment of data described above was extracted from the two-hour set of data.   

The first 44 (of 72) channels were analyzed.  This was done for three primary reasons: 1) 

both patients primarily experienced epileptic activity in the temporal region and the frontal 

regions.  These regions did not require analysis above channel 44.  2) A faulty recording 

device used for channels 63J-72K introduced large amounts of noise into the signal and 3) to 

save computational time.  The twenty-second segment of data was decimated by a factor of 

four in sampling rate from 1000Hz down to 250Hz.  The 250Hz decimated frequency 

sampling rate proved to accurately represent the dominant frequencies contained in the signal 

sampled at 1000Hz while minimizing noise (this helps when fitting the MVAR model) and 

saving computational time.  The decimated twenty-second segment of data was used to 

generate the time-variant MVAR coefficients. 
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5. Results 

5.1 Simulation 

A set of simulated signals was generated according to the model described in Figure 

4.4.1.  A sinusoid with frequency varying from 12Hz (at t=0s) down to 8Hz (at t=3s) 

generated at a sampling rate of 250Hz was used to simulate a non-stationary seizure.  A layer 

of noise with 5dB signal-to-noise ratio (SNR) was added to the signal to more accurately 

represent a typical EEG signal.  The signals are a total of five seconds in length with two 

seconds prior to simulated seizure onset and three seconds following simulated seizure onset.   

The resulting simulated signals are shown below in Figure 5.1.1.  The seizure starts at time 

0s in channel one and propagates according to Figure 4.4.1.   

 

Figure 9.1.1: Simulated Signals with 5dB SNR 

Both the ffADTF (Eq. 7) and swADTF (Eq. 8) were calculated for the simulated signals 

shown above.  A reference output was also calculated.  The results are shown below in 

Figure 5.1.2.   
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Figure 10.1.2: Simulated Signals Connectivity Results 

As can be seen from the figure above, both the ffADTF and swADTF have results similar 

to the desired output.  Both measures show high connectivity from channel 1 to all other 

channels in the model.  All diagonal plots show high connectivity because the amount of 

information moving from one signal to itself is obviously very high.  The swADTF matches 

the reference output exactly whereas the ffADTF shows slightly lower connectivity from 

channel 1 to channels 3 and 4.  The “connectivity image” of Figure 5.1.2 can also be 

displayed as a simple histogram showing the total reinforcements of a connection from a 

particular channel to all other channels.  The histogram results are shown below in Figure 

5.1.3. 
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Figure 11.1.3: Simulated Signals Connectivity Histogram 

As in Figure 5.1.2, Figure 5.1.3 shows all connections correctly being initiated by 

channel 1 for both the ffADTF and the swADTF.  In this example, the simulation signals are a 

total of 5 seconds in length sampled at 250Hz.  There are a total of 1250 samples for each 

signal.  The overall reinforcements of a connection are greater for the swADTF (1000/1250) 

compared to the ffADTF (800/1250). 

The sensitivity (Eq. 9) and specificity (Eq. 10) were calculated for the ffADTF and the 

swADTF by comparing the respective output to the reference output.  The results are shown 

in Table 5.1.1.  
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Table 12.1.1: Sensitivity and Specificity 

 ffADTF swADTF 

Sensitivity 0.8634 0.9278 

Specificity 0.9991 0.9993 

 

Both measures have extremely high specificity and the difference between the two is 

negligible.  The swADTF proves superior in sensitivity compared to the ffADTF measure.  

This mostly has to do with the addition of weighing all outgoing information in the transfer 

function by the autospectrum of the sending (j) signal.  This prevents Hij(f,t) from being 

elevated even when there is no power in the spectrum of that signal at that frequency and 

time.  The swADTF was chosen over the ffADTF due to this higher sensitivity.  

The simulation model was expanded to sixteen channels.  The sequence of events in the 

sixteen channel simulation is the same as in Figure 4.4.1 with the addition of twelve channels 

containing uncorrelated white noise with 5dB SNR.  The propagation sequence of the 

simulated seizure was randomized and begins in channel 16 before spreading according to 

Figure 4.4.1 to channels 13, 3, and 4.  The swADTF results are shown below in Figure 5.1.4. 

 

Figure 13.1.4: Expanded Simulated Signals Connectivity Histogram 
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The swADTF measure is successfully able to identify channel 16 as the initiating channel 

in this expanded simulation.    

The short-time swDTF was computed for the expanded sixteen channel simulated using a 

100ms Hamming window with 50% overlap.  The short-time results were compared to the 

adaptive results.  In this instance, the simulated seizure begins in channel 10 before spreading 

according to Figure 4.4.1 to channels 6, 12, and 2.  The results are below in Figure 5.1.5.   

 

Figure 14.1.5: Short-Time versus Adaptive Simulation Model Results 

Both the short-time swDTF (swST-DTF) and the adaptive swDTF (swADTF) correctly 

show channel 10 as being the initiating channel for the simulated seizure.  Note the large 

difference in the reinforcements of connections from each plot.  The short-time approach has 

a maximum of around 550 “reinforcements of connections” whereas the adaptive approach 

has nearly 8000.  This difference is mostly due to the large difference in  the number of 

samples.  The adaptive approach has a time-variant swDTF value at every time point in the 

signal whereas the short-time approach only has a time-variant swDTF value every 50ms.  It 

is also clear that that the short-time approach shows influences from other channels that are 

not the initiating channel whereas the adaptive approach does not.  
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 In order to better visualize the data, the raw values of the swDTF over time can be plotted 

for each pair of channels.  The swDTF values between the four channels of the simple 

simulation over time for both the adaptive and short-time approach are plotted in Figures 

5.1.6 and 5.1.7.  The green line in each plot shows the uniform threshold used to determine 

significant connections for the particular measure as shown in previous figures.  The red 

vertical line shows the onset time of the simulated seizure.    

 

             Figure 15.1.6: Raw Adaptive swDTF Values 
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                   Figure 16.1.7: Raw Short-Time swDTF Values 

Both figures show a large increase in the swDTF values following onset of the simulated 

seizure at time t=0s from channel 1 (column 1).  The adaptive measure has a slight delay 

following onset due to the inherent delay in the Kalman filtering algorithm.  The short-time 

approach does not show this delay and immediately reaches threshold following onset of the 

simulated seizure.  On the other hand, the adaptive approach shows much less variation in 

swDTF values in the channels that are not the site of onset (columns 2, 3, and 4).   

5.2 Clinical ECoG Data 

The short-time and adaptive swDTF measures were applied to twenty second segments of 

the 44 channels for each noted seizure of two different patients during the two week IVEM 

procedure.  Patient 1 experience five seizures and Patient 2 experienced fifteen seizures.  

Results for all seizures of both patients are included in Appendix B.  The anatomical location 

of each electrode number mentioned throughout this thesis can be found in Appendix A.  

This section contains two seizures from Patient 2 and one seizure from Patient 1.  The results 
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from Patient 2, seizure 3 are below for the adaptive (Figure 5.2.1) and the short-time (Figure 

5.2.2) approaches.  The epileptologist noted channels 27-42D and specifically channels 34C, 

39D, 40D, and 41D as electrodes of interest for the particular seizure. 

 

Figure 17.2.1: Adaptive swDTF for Patient 2, Seizure 3 

 

Figure 18.2.2: Short-Time swDTF for Patient 2, Seizure 3 
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Both measures successfully identify the correct region of interest as denoted by the 

epileptologist.  The adaptive measure pinpoints channel 41 as the epileptogenic focus 

whereas the short-time measure shows elevated levels of connectivity for channels 34C-42D 

and specifically channels 40D and 41D.  These results are consistent with simulations with 

the short-time approach tending to show more influence from additional channels than the 

adaptive approach.  The bottom plot shows the interaction between each pair of channels.  It 

is clear that the adaptive measure provides a more meaningful plot of this interaction between 

pairs channels than the short-time measure mostly due to the number of samples each 

measure is estimated with.   

For Patient 2, seizure 1, the epileptologist noted channels 34C-42D and specifically 

channels 34C, 40D, 41D, and 42D as electrodes of interest for the particular seizure.  The 

results are below in Figures 5.2.3 and 5.2.4.    
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Figure 19.2.3: Adaptive swDTF for Patient 2, Seizure 1 

 

Figure 20.2.4: Short-Time swDTF for Patient 2, Seizure 1 
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Once again, both measures successfully identify the general region of interest as noted by 

the epileptologist.  The short-time approach is spread out over many channels from 32C-43E 

whereas the adaptive approach only identifies channels 41D and 42D.  The short-time 

approach also shows high connectivity values for channels not noted by the epileptologist 

(1A, 23B, 12A).  

For Patient 1, seizure 1, the epileptologist noted channels 51-55J, 26D as electrodes of 

interest for the particular seizure.  Channels 17C-59K were analyzed for this patient.   The 

results are below in Figures 5.2.5 and 5.2.6.    

 

Figure 21.2.5: Adaptive swDTF for Patient 1, Seizure 1 
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Figure 22.2.6: Short-Time swDTF for Patient 1, Seizure 1 

 In this case, the adaptive approach successfully identifies an electrode within the region 

noted by the epileptologist (electrode 51J).  The adaptive approach also shows slightly elevated 

connectivity values for channel 36F.  This channel was noted by the epileptologist.  Channel 17C 

shows slightly elevated connectivity and was not noted by the expert.  The short-time approach 

shows elevated connectivity values from 51-57J.  This is consistent with the expert observations.  

The highest connectivity values, however, are noted in channels 40G and 46H which were not 

channels noted by the expert.  The remaining results are included in Appendix B. 

Both the time-variant swDTF and ffDTF measures were successful at identifying the 

simulated epileptogenic focus in the simple and expanded simulations.  The swDTF proved to 

have higher sensitivity than the ffDTF and was chosen over the ffDTF for use with clinical data.  

Both the short-time and adaptive approaches were able to identify electrodes of interest  
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consistent with findings from the expert epileptologist.  The adaptive approach, however, 

was much better at pinpointing an exact electrode whereas the short-time approach showed 

elevated connectivity levels for a large region of electrodes.   
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6. Discussion 

The simulation model generated was able to verify that the time-variant swDTF was 

successful at analyzing a spreading, non-stationary signal and determining the source of that 

signal.  The simulation confirmed that both the adaptive ffDTF and swDTF were able to identify 

the simulated epileptogenic focus (Figure 5.1.2 and 5.1.3).  Both measures had very high 

specificity (0.999) and a sensitivity of at least 86%.  The swDTF had higher sensitivity (93%) 

than the ffDTF (86%).  This is mostly due to the additional weighting by the autospectra of the 

sending signal in the swDTF measure.   

After moving forward with the swDTF, the measure continued to prove itself after 

successfully identifying the simulated epileptogenic focus in more advanced simulations (Figure 

5.1.4).  The adaptive swDTF was then compared to a much simpler short-time swDTF using the 

same expanded sixteen channel simulation model.  Both measures proved successful at 

identifying the simulated epileptogenic focus.  The short-time approach showed more additional 

channels with elevated connectivity than did the adaptive approach (Figure 5.1.5).  This is 

mostly due to the vast difference in the number of samples used in the two methods.  The 

adaptive approach is modeled for every time point (i.e., 250 samples per second) in the data 

whereas the short-time approach is only modeled one time within each window (i.e., 20 samples 

per second).  The result is a total of 5000 samples for the adaptive swDTF compared to only 400 

for the short-time swDTF.   This observation was consistent throughout analysis of all simulated 

and physiological data.  This difference was also confirmed when observing the raw swDTF 

values (Figures 5.1.6 and 5.1.7).  The adaptive measure exhibited much less fluctuation in the 

swDTF values and shows values consistently below the threshold in sending channels that are 

not the epileptogenic focus.  The short-time measure expresses a much more sporadic pattern 
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with values coming very close to or even exceeding the threshold in sending channels that are 

not the epileptogenic focus.   

The results from applying the short-time and adaptive measures to twenty second ictal 

segments of ECoG data were promising.  Both measures showed elevated connectivity levels 

sent from channels of interest noted by the epileptologist.  The adaptive measure was typically 

able to pinpoint one or two channels of interest whereas the short-time measure identified a 

larger region.  This is evident in Figures 5.2.3 and 5.2.4.  The electrodes of interest were 

identified by the expert to be from 37-42D.  The adaptive approach identified channels 41 and 

42D whereas the short-time approach identified the region from 32C-43E.  Again, this 

discrepancy can mostly be explained by the large difference in the number of samples used for 

each measure.  The lesser number of samples that the short-time approach is calculated with 

makes the measure more susceptible to noise in the signal.   The short-time approach also 

requires the assumption of a stationary signal within the 100ms window.  This may not be the 

case during onset of an epileptic seizure. The adaptive approach can be used to more accurately 

model this highly non-stationary behavior.  The short-time approach also proved to be extremely 

sensitive to parameter changes in the measure.  Window size, percent overlap, MVAR model 

order, MVAR estimation mode (e.g., Nutall-Strand versus Vieira-Morf) all greatly affected the 

outcome of the measure.  The adaptive measure proved more robust.   All of these factors played 

a role in both increasing the short-time swDTF values for channels not involved in the 

propagation of the seizure and introducing variation between the two methods.   

The largest benefit of the short-time approach was a drastic reduction in computation time.  

Whereas the adaptive approach takes approximately 12 hours to analyze a single seizure, the 

short-time approach took only 30 minutes (running on Intel Xeon CPU E5-2637 with 64GB of 
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RAM).  The short-time approach is also much less computationally intensive than the adaptive 

approach and can therefore be used on more common machines.    

Overall, the adaptive approach was able to successfully identify the electrodes of interest (± 

10mm) as noted by the epileptologist as the electrode with the largest reinforcements of 

connections (largest histogram value) in 14 out of 16 (88%) seizures for the two patients.  The 

short-time approach was able to identify a region of 30-100mm within the region of interest as 

noted by the epileptologist in 12 out of 16 (75%) seizures for the two patients.    
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7. Future Work 

In the future, it is important to verify the results of the various time-variant swDTF 

measures.  Up until now, the only verification performed has been on simulated data by 

calculating the sensitivity and specificity of the measures.  When applying to ECoG data, the 

current available methods for verifying results simply involve comparing electrodes with 

high swDTF values with electrodes of interest noted by the epileptologist.  Actual 

verification of the swDTF results with the resected tissue would be possible with post-

operational magnetic resonance imaging (MRI).  These post-operational images are not 

currently available for the subjects studied in this work due to the long follow-up time 

currently required by the EMU.   

The short-time version of the swDTF measure can be refined in a number of ways.  All 

parameters (window size, percent overlap, model order, model estimation mode, etc.) were 

empirically determined.  Verification other than using a simple simulation is recommended 

and the parameters may be optimized with more experimentation.   

The recent availability of ECoG data from approximately ten additional patients leaves 

testing the measure on the additional patients an option.  This would provide results that can 

help with refining the measure and realizing the robustness of the measure on a large number 

of patients.   

Finally, the ability of the measure to function as a simple plugin to the open-source 

EEGLAB software is ideal.  The measure is currently run as a MATLAB function.  Creating 

an EEGLAB plugin would allow easy access and customization to the measure along with 

the other tools already included in the EEGLAB package.  
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8. Conclusion 

This thesis contributes to the area of epilepsy surgery by introducing a quantitative 

measure that may help both aid the surgeon in delineating a potential epileptogenic focus and 

reduce the overall procedure time.  The measure is known as the time-variant spectrum –

weighted directed transfer function (swDTF) and was able to correctly identify the 

epileptogenic focus in a simulation model with sensitivity of 0.93 and specificity of 0.99.  

When applied to clinical data, the adaptive version of the swDTF successfully identified the 

electrode of interest (± 10mm) as noted by the epileptologist in 88% of seizures analyzed.  

The short-time version of the swDTF successfully identified a region of 3-10 electrodes (30-

100 mm) in 75% of seizures analyzed.  The methods and findings of this thesis are concluded 

in detail below.  

The ability of a time-variant directed transfer function measure known as the spectrum-

weighted directed transfer function to identify elevated information transfer from a particular 

electrode as the possible epileptogenic region was studied.  Two different methods using 

multivariate autoregressive models were used to generate the time-variant measures.  One 

method used an adaptive Kalman filtering approach and another method used a short-time 

approach.  The two methods were compared using a simulation model and clinical ECoG 

data. 

The simulation of neural connections revealed the superiority of the time-variant swDTF 

over the ffDTF.  Both measures had high specificity (0.999) but the sensitivity of the swDTF 

(0.93 over 0.86) led to it being chosen over the ffDTF for use with clinical data.  When 

applied to ECoG data, both the adaptive and short-time approach were able to successfully 

identify electrodes within the region of interest.  The adaptive approach was able to 
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successfully identify the electrodes of interest (± 10mm) as noted by the epileptologist as the 

electrode with the largest reinforcements of connections (largest histogram value) in 14 out 

of 16 (88%) seizures for the two patients.  The short-time approach was able to identify a 

region of 30-100mm within the region of interest as noted by the epileptologist in 12 out of 

16 (75%) seizures for the two patients.  Although the short-time approach had the major 

benefit of greatly reducing computation time, the adaptive approach is currently preferred 

mostly due to its robustness in terms of changes to input parameters.  The adaptive approach 

is also better able to pinpoint the exact electrode (±10mm) whereas the short-time approach 

is better at identifying a general region of interest (30-100mm).  Another reason for choosing 

the adaptive approach is because of the short-time’s need for stationarity within the window.  

It is suggested that the short-time approach be used to gain quick insight into the general 

region of interest for the seizure and to later pinpoint the potential epileptogenic tissue using 

the adaptive measure.     
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10. Appendix A: Electrode Locations 
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Table A1: Electrode Grids 

Grid Electrode Number 

A 1-20 

B 21-28 

C 29-34 

D 35-42 

E 43-46 

F 47-50 

G 51-54 

H 55-58 

I 59-62 

J 63-66 

K 67-72 
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11. Appendix B: Complete Results 

Subject 2: 

Seizure #1. Repetitive spike-wave discharges (5 to 6 Hz) were noted at electrode contacts 

D37-42 for 1 second at 21:01:23 on 6/12/2012. This was followed by an 

electrodecrement/beta buzz at 21:01:25. This evolved into a high-amplitude spike pattern 

maximum at contacts 39, 40, and 34. This pattern evolved, becoming higher in amplitude 

and slower in frequency before spontaneously terminating at 21:02:22. Clinically, the 

patient did not show any significant changes when he was tested by nursing personnel at 

21:02:30. He informed the nurse that he was doing okay.  

 

Adaptive Results: 

 
 

Short-Time Results: 
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Seizure #2. Electrographically, high-amplitude repetitive spikes were noted at electrodes 

40-42 and 34 at 23:47:54. This was followed by an electrodecrement/beta buzz at 

23:47:56 and then evolved into a high-amplitude spike and polyspike repetitive pattern (6 

to 7 Hz) at 23:47:57. This evolved becoming higher in amplitude and slower in frequency 

before spontaneously terminating at 23:49:05. Clinically, the patient was not noted to 

demonstrate any changes nor did he inform nursing of any change in feeling. 

 

Adaptive Results: 

 
 

Short-Time Results: 
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Seizure #3. Electrographically, similar ictal pattern beginning with repetitive spikes was 

noted at 01:49:27. This evolved with an electrodecrement/beta buzz at 01:49:25 and then 

evolved into a higher amplitude with repetitive spike-wave discharge. It evolved to a 

higher amplitude with slower frequency before spontaneously terminating.  

No clinical changes were noted. 

 

Adaptive Results: 

 
 

Short-Time Results: 
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Seizure #4. Electrographically, a repetitive spike pattern was noted over the left 

mesiotemporal surface at 05:02:21, similar to the 3 previous subclinical electrographic 

seizures. This, again, evolved over approximately 1 minute before spontaneously 

terminating.  

No definitive clinical changes were noted.  

 

Adaptive Results: 

 
 

Short-Time Results: 
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Seizure #5. Electrographically repetitive spikes were noted at 07:33:19 at electrodes 38-

42 and electrodes 34 and 45. This was followed by an attenuation/beta buzz at 07:33:20 

followed by an ictal evolving pattern becoming higher in amplitude and slower in 

frequency before terminating at 7:35:35. 

 

Adaptive Results: 

 
 

Short-Time Results: 
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Seizure #6. Occurred at 6/13/2012 at 16:23:20. Electrographically, there was a subtle 

ictal pattern involving electrode contacts 2 through 6 on A grid over the left frontal head 

region. This was a subtle pattern and no clinical changes were noted during this event. 

 

Adaptive Results: 

 
 

Short-Time Results: 
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Seizure #7. Electrographically, at 16:47:57 on 6/13/2012 there was rhythmic sharply 

contoured theta activity over the left frontal grid (electrodes 2 through 6), which evolved 

into a spike configuration. This ictal pattern showed a subtle evolution before stopping at 

16:49:24. Clinically, no clinical changes were noted on review of the video files. 

 

Adaptive Results: 

 
 

Short-Time Results: 
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Seizure #8. Electrographically, a rhythmic, sharply contoured theta pattern was noted 

over the left frontal grid at 17:04:36. This evolved similar to seizure #7, evolving to a 

spike-like configuration before spontaneously terminating at 17:05:36. There appeared to 

be a field involving electrode 62, which was over the right basal frontal area. Clinically, 

no definitive changes were noted in the patient's behavior. 

 

Adaptive Results: 

 
 

Short-Time Results: 
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Seizure #9. Electrographically, at 22:13:44 on 6/13/2012, a beta buzz was noted. Within 

2 seconds, this evolved to a 4-6 Hz spike-like pattern, maximum at electrodes 40-42. This 

evolved, becoming higher amplitude and slower in frequency before spontaneously 

terminating at 22:14:45. 

 

Adaptive Results: 

 
 

Short-Time Results: 
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Seizure #10. Electrographically, at 00:05:14 on 6/14/2012, a beta buzz was noted. This 

evolved into repetitive 4 Hz spike-wave pattern involving electrodes 36, 42, and 44. This 

subsequently showed propagation and diffuse slowing over the frontal head regions, 

including the left frontal grid and the left interhemispheric strip. This spontaneously 

terminated at 00:07:26. 

 

Adaptive Results: 

 
 

Short-Time Results: 
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Seizure #11. Electrographically, a beta buzz was identified at 21:56:45 involving 

electrode contacts 33-34 and 35-42. This evolved into higher amplitude of 4-5 Hz spike 

and spike-wave pattern. Initially, this became a higher amplitude and slower frequency 

before spontaneously terminated at 21:57:54. 

 

Adaptive Results: 

 
 

Short-Time Results: 
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Seizure #12. Electrographically at 08:24:22 on 6/16/2012, a repetitive spike discharge 

was noted at 08:24:22, maximum at electrode contacts 34 and 41. This changed into a 

beta buzz at 08:24:25 and then evolved into a higher amplitude repetitive spike pattern 

initially in the theta range. This evolved becoming higher in amplitude and slower in 

frequency before spontaneously terminating at 08:25:35. 

 

Adaptive Results: 

 
 

Short-Time Results: 
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Seizure #13. Electrographically, at 05:26:06 on 06/17/2012, a beta buzz was recorded 

over electrode contacts 34 and 40.  This evolved with subsequent spread to the frontal 

head regions at 05:26:50.  This showed a similar electrographic evolution as previously 

noted in both subclinical events.  This spontaneously terminated at 05:30:50. 

 

Adaptive Results: 

 
 

Short-Time Results: 
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Seizure #14. Electrographically, a beta buzz was noted at electrodes 34 and 40 at 

08:16:14.  This evolved similar to previous documented ictal patterns.  It showed spread 

to the frontal head regions at 08:16:54 and then secondary generalization at 08:24:06. 

 

Adaptive Results: 

 
 

Short-Time Results: 
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Seizure #15. Electrographically at 09:13:15 on 6/17/2012, repetitive spikes were noted at 

contacts 34 and 40. This evolved into a beta buzz at 09:13:21. This evolved, becoming 

higher amplitude and slower in frequency before terminating at 09:15:47. 

 

Adaptive Results: 

 
 

Short-Time Results: 
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Subject 1: 

Seizure 1: Occurred on 6/8/2012 at 23:21:29. In this event, rhythmic activity begins at 

23:21:29 in the form of 4 Hz to 5 Hz slowing in contacts 51-55. Electrical activity 

evolves to high-frequency beta activity in contacts 51-53 from 23:21:34 to 23:21:36. By 

23:22:03, polyspike and slow-wave activity is seen in contacts 26, 36, and 51-55. The 

event ends electrically at 23:23:08 with suppression of electrical activity, but the 

suppression is most prominent in contacts 51-55. 

 

Adaptive Results: 

 
 

Short-Time Results: 
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12. Appendix C: MATLAB Code 

Main: Adaptive swDTF 

%************************************************************************** 
%************************************************************************** 
% This program calculates the swADTF using the data from the EMU.  
% Kalman filtering is used to estimate the multivariate 
% time-varying autoregressive coefficients.  The time-varying transfer 
% matrix is calculated and normalized to the swADTF.  A uniform threshold 
% is set as the 99.9 percentile of the swADTF values and the number of 
% connections based on the threshold is determined for each channel.  The 
% measure outputs a bar graph showing the total connections for each 
% channel as well as an image plot showing the various connections of each 
% channel.  The channel with the highest connections is indicative of the 
% epileptogenic focus. 
% 
% James Gurisko - Created: 7/16/2013 
%                 Last Updated: 4/16/2014 
%************************************************************************** 
%************************************************************************** 
clear all; 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%% 
%************************************************************************** 
% USER: SET PARAMETERS HERE 
  
File = 'DataNotes.xlsx'; %Name file with seizure #'s, start/stop times, etc 
Dir = 'C:/eegData/SH-EEG/'; %Directory containing Patient data 
Seizure = 1;%Which seizure to analyze (according to seizure # in File above) 
len = 20;%Length of data to analyze (s) 
Fs = 1000;%Sampling Frequency of data (Hz) 
lchan = 1; hchan = 46; %Range of channels to analyze (e.g. 1-46) 
%************************************************************************** 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%% 
  
%Initialize reads in start/stop times of the seizure from File and converts 
%them to absoulte points to be used in selecting the data to be analyzed. 
%It also creates a vector of strings including the filename that will be  
%used to import the data 
  
%File = 'DataNotes.xlsx'; Dir = 'C:/eegData/SH-EEG/'; %Patient 2 
%File = 'DataNotes_Patient1.xlsx'; Dir = 'C:/eegData/Subject 1 Data/'; %Patient 1 
[Start_Vector, File_String] = Initialize(File,Dir); 
  
%Open eeglab and import EDF data 
%Seizure = 1; len = 20; %Seizure #, Length of desire signal in seconds 
EEG = Import_EEG(Seizure,File_String); 
  

  
%Select portion of data to analyze and normalize it 
%lchan = 1; hchan = 46; %Patient 2 
%lchan = 15; hchan = 61; %Patient 1 
[y,xlabels] = extract_EEG(EEG,Fs,Seizure,Start_Vector,len,lchan,hchan); 
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% %Decimate the data 
dF = 4; %1000/4 = 250Hz 
[x,fs,n,m] = decimate_EEG(y,Fs,dF); Fs = fs; 
  
%CREATE MVAAR MODEL 
%************************************************************************** 
p = 10; UC = 0.001; N = 30; %P = model order, UC = update coefficient 
disp('Creating MVAAR model...'); 
[H,S,F2] = mvaar_H_S(x',p,fs,N,UC); 
  
%CALCULATE SWADTF & UNIFORM THRESHOLD 
%*************************************************************************** 
%Form is: swADTF(i,j,t); 
f1 = 5; f2 = 30; %Frequency limits to compute over 
[swADTF, UTsw] = calc_swADTF(H,f1,f2); 
  
% Calculate Connections based on Threshold across all n 
%************************************************************************** 
[ConnOutsw,Connsw] = calc_conns(swADTF,UTsw,m,n); 
  
% Plot histogram and output image 
%************************************************************************** 
subplot(2,1,1); 
bar(Connsw,'stacked');title('Adaptive swDTF');ylabel('Reinforcements of Connections'); 
set(gca,'XTick',[1:size(x,1)]);set(gca,'XTickLabel',... 
    xlabels(1:size(x,1)));set(gca,'FontSize',6); 
subplot(2,1,2); 
image(((ConnOutsw./max(max(ConnOutsw))).*255));set(gca, 'XAxisLocation', 'top'); 
set(gca,'XTick',1:size(x,1));set(gca,'XTickLabel',xlabels(1:size(x,1))); 
set(gca,'YTick',1:size(x,1));set(gca,'YTickLabel',... 
    xlabels(1:size(x,1)));set(gca,'FontSize',6);ylabel('Receiving Channel (i)'); 
    xlabel('Sending Channel(j)'); 
% %************************************************************************** 
% %************************************************************************** 
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Main: Short-Time swDTF 

 
%************************************************************************** 
%************************************************************************** 
% This program calculates the swST-DTF using either the data from the  
% simulation or Spectrum Health's EMU.  
% Short-Windows are used to generate a time dependant version of the DTF.   
% This is normalized to the spectrum-weighted ST-DTF (swST-DTF) 
% 
% James Gurisko - Created: 11/11/2013 
%                 Updated: 4/16/2014 
%                 **This is a modification to the swADTF Kalman Fitler 
%                 approach for delineating the epileptogenic focus for my 
%                 thesis 
%************************************************************************** 
%************************************************************************** 
clear all; 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%% 
%************************************************************************** 
% USER: SET PARAMETERS HERE 
  
File = 'DataNotes.xlsx'; %Name file with seizure #'s, start/stop times, etc 
Dir = 'C:/eegData/SH-EEG/'; %Directory containing Patient data 
Seizure = 1;%Which seizure to analyze (according to seizure # in File above) 
len = 20;%Length of data to analyze (s) 
Fs = 1000;%Sampling Frequency of data (Hz) 
lchan = 1; hchan = 46; %Range of channels to analyze (e.g. 1-46) 
%************************************************************************** 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%% 
  
%Initialize reads in start/stop times of the seizure from File and converts 
%them to absoulte points to be used in selecting the data to be analyzed. 
%It also creates a vector of strings including the filename that will be  
%used to import the data 
  
%File = 'DataNotes.xlsx'; Dir = 'C:/eegData/SH-EEG/'; %Patient 2 
%File = 'DataNotes_Patient1.xlsx'; Dir = 'C:/eegData/Subject 1 Data/'; %Patient 1 
[Start_Vector, File_String] = Initialize(File,Dir); 
  
%Open eeglab and import EDF data 
%Seizure = 1; len = 20; %Seizure #, Length of desire signal in seconds 
EEG = Import_EEG(Seizure,File_String); 
  

  
%Select portion of data to analyze and normalize it 
%lchan = 1; hchan = 46; %Patient 2 
%lchan = 15; hchan = 61; %Patient 1 
[y,xlabels] = extract_EEG(EEG,Fs,Seizure,Start_Vector,len,lchan,hchan); 
  
% %Decimate the data 
dF = 4; %1000/4 = 250Hz 
[x,fs,n,m] = decimate_EEG(y,Fs,dF); Fs = fs; 
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%Short-Time Directed Transfer Function (ST-DTF) 
%**************************************************************************     
win_len = Fs/10;  %Length of Window  
overlap = fix(win_len*0.5); %Amount of overlap 
[M,N]=size(y); %Number of channels and samples 
Nf = Fs/5; %Number of frequency points 
Fmax = 30; %Max freq limit in DTF calculation 
  
%Determine optimal order for AR model 
[w,A_TI, C_TI, sbc, fpe, th] = arfit(y',1,20,'sbc'); 
[tmp, p_opt] = min(sbc); p_opt = 4; 
  
disp('Generating Short-Time MVAR Model'); 
% ST_DTF = zeros(M,M,Nf,ceil(len/win_len)); 
start = 1; i = 1; 
while(start + win_len - 1 < N), 
    y_part = y(:,start:start+win_len-1)'; 
    y_win = y_part.*repmat(hamming(size(y_part,1)),1,M); 
    [A,RCF,PE] = mvar(y_win,p_opt,7); 
    ST_DTF(:,:,:,i) = DTF_matrix(A,p_opt,Fs,Fmax,Nf); 
    start = start + (win_len-overlap); 
    i = i + 1; 
end 
 
%CALCULATE SWSTDTF & UNIFORM THRESHOLD 
%*************************************************************************** 
%Form is: swADTF(i,j,t); 
f1 = 5; f2 = 30; %Frequency limits to compute over 
[swSTDTF, UTsw] = calc_swADTF(H,f1,f2); 
  
% Calculate Connections based on Threshold across all n 
%************************************************************************** 
[ConnOutsw,Connsw] = calc_conns(swSTDTF,UTsw,m,n); 
  
% Plot histogram and output image 
%************************************************************************** 
subplot(2,1,1); 
bar(Connsw,'stacked');title('Short-Time swDTF');ylabel('Reinforcements of Connections'); 
set(gca,'XTick',[1:size(x,1)]);set(gca,'XTickLabel',... 
    xlabels(1:size(x,1)));set(gca,'FontSize',6); 
subplot(2,1,2); 
image(((ConnOutsw./max(max(ConnOutsw))).*255));set(gca, 'XAxisLocation', 'top'); 
set(gca,'XTick',1:size(x,1));set(gca,'XTickLabel',xlabels(1:size(x,1))); 
set(gca,'YTick',1:size(x,1));set(gca,'YTickLabel',... 
    xlabels(1:size(x,1)));set(gca,'FontSize',6);ylabel('Receiving Channel (i)'); 
    xlabel('Sending Channel(j)'); 
% %************************************************************************** 
% %************************************************************************** 
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Functions: 

 
function [Start_Vector, File_String] = Initialize(file,dir) 
%This program initializes the swADTF_measure by performing 
%the following options: 
%       - Adding Necessary Paths 
%       - Opening file containing start stop times of seizure 
%       - Reading in .EDF file names 
% 
%The function returns the vector of Seizure Start times and the vector  
%containing the full strings of the file name that can be used to load 
%the data into EEGLAB 
% 
% Inputs: 
% file = name of xlsx file containing start/stop times of seizure  
%         e.g. 'DataNotes.xlsx' 
% dir = directory containing EEG files 
%         e.g. 'C:/eegData/SH-EEG/' 
% 
% Outputs: 
% Start_Vector = Start times of each seizure in absoulte points 
% File_String = Vector of strings containing full file name w/ path 
%************************************************************************** 
%Add necessary folders 
addpath('C:/eegData/MATLAB/Guriskoj','C:/eegData/MATLAB/WOSSPA_Mathworks_v2',... 
    'C:/eegData/MATLAB/eeglab10.2.2.4b'); 
  
%Read in start times of seizure 
Hour = xlsread(file,1,'O:O'); 
Minute = xlsread(file,1,'P:P'); 
Second = xlsread(file,1,'Q:Q'); 
  
%Calculate absolute start in terms of sample number per file 
Start_Vector = (((Hour.*60)+Minute).*60)+Second; 
  
%Read in filenames 
[num FileNames raw] = xlsread(file,'I:I'); 
size(FileNames) 
clear num; clear raw; 
  
%Create full string to used to import data 
for b = 1:1, 
    File_String(b,1) = strcat(dir, FileNames(b+1,1)); 
end 

 

function [EEG] = Import_EEG(b,File_String) 

%This program imports the .EDF EEG file using EEGLAB and biosig toolbox and 
%returns the EEG structure 
% 
% 
% Inputs: 
% b = Seizure number to import (from 'datanotes.xlsx') 
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% Start_Vector = vector of start times of seizures         
% File_String = vector containing file name + directory 
%         e.g. 'C:/eegData/SH-EEG/BA26802N_1-1.edf' 
% dt = time segment to import (e.g. 20 seconds) 
% 
% Outputs: 
% EEG = Strucutre of imported .edf file 
%************************************************************************** 
eeglab; %Open EEGLAB 
FileTemp = File_String(b); 
FileFinal = FileTemp{1}; 
EEG = pop_biosig(FileFinal,'importevent','off','blockepoch','off'); 
  
EEG.setname='CurrentSet';  
EEG = eeg_checkset( EEG ); 
eeglab redraw; 
 
function [x2,xlabels] = extract_EEG(EEG,Fs,b,Start_Vector,dt,lchan,hchan) 
%This function extracts the portion of data that will be analyzed from the 
%complete two hour segment of EEG data.  The function extracts the data 
%from Start to Stop for all channels between lchan and hchan (low channel 
%and high channel).  The function also creates a vector of containing the 
%electrode label of the extracted channels. 
% 
%The function also normalizes the data using the zscore 
% 
% Inputs: 
% EEG = EEG struct returned by EEGLAB, used for getting Channel Labels 
% Fs = Decimated Sampling Frequency     
% b = Seizure number 
% Start_Vector = Vector of start times from Initialize function 
% dt = time segment to import (e.g. 20 seconds) 
% lchan = Low end channel to include in analysis 
% hchan = high end channel to include in analysis 
% 
% Outputs: 
% x = Extracted Data of size hchan:lchan by Start*Fs:Stop*Fs 
%************************************************************************** 
y = EEG.data; y = double(y); 
  
Start = Start_Vector(b); Stop = Start+dt; 
  
%Constant, identifies EEG Mark channels to remove 
eegmark1 = 39; eegmark2 = 40;  
  
%Take channels lchan-hchan (except 39, 40 which are "EEG marks") 
%Take 20 seconds of data, 5 before onset, 15 after 
x(1:length(lchan:(eegmark1-1)),:) = y(lchan:eegmark1-1,Fs*Start:Fs*Stop - 1); 
x(length(lchan:(eegmark1)):hchan-lchan-1,:) = y(eegmark2+1:hchan,Fs*Start:Fs*Stop - 1); 
  
%Create channel labels vector of channels used in measure 
xlabels_temp = char(EEG.chanlocs.labels); xlabels = xlabels_temp; 
xlabels(1:length(lchan:(eegmark1-1)),:) = xlabels_temp(lchan:eegmark1-1,:); 
xlabels(length(lchan:(eegmark1)):hchan-lchan-1,:) = xlabels_temp(eegmark2+1:hchan,:); 
xlabels = cellstr(xlabels); 
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%Normalize mean and standard deviation 
x2 = zscore(x,0,2); %Standardize across rows  

 

function [y2,fs,n,m] = decimate_EEG(y,Fs,dF) 
%This function decimates each channel of the EEG data by the downsample 
%factor and returns the decimated data and the new sampling frequency 
% 
% Inputs: 
% y = (double) EEG.data 
% Fs = Initial Sampling Frequency (Hz)      
% dF = Downsample factor (e.g., fs = 1000/dF = 1000/4 = 250 Hz) 
% 
% Outputs: 
% y2 = Decimated data 
% fs = New sampling frequency 
% n = New number of samples 
% m = Number of channels 
%************************************************************************** 
fprintf('Decimating the data by a factor of %d...',dF); 
  
fs = round(Fs/dF); %Calculate decimated sampling frequency 
  
for i = 1:size(y,1), 
    ytemp = decimate(y(i,:),dF); 
    y2(i,:) = ytemp(1,:); 
end 
[m,n]=size(y2); 
 
function [H,S,f] = mvaar_H_S(X,p,fs,N,UC) 
% Returns time variant, frequency-dependent transfer and spectral matrices,for an adaptive MVAR model  
% of order p fit to the n-by-m signal X, where n is the number of time values and m is the number 
% of channels.  
% fs = sampling frequency 
% N = number of evenly spaced frequency values from 0 to fs/2.  
  
% Outputs: 
% f= frequency vector. 
% H= m by m by n by N by n transfer matrix. H(i,j,F,t) denotes the transfer 
% function from i to j at time t, frequency F. 
% S= spectral density matrix of dimension m by m by N by n. 
[n,m]=size(X); 
f = (0:N-1)*(fs/(2*N)); 
[x,e,Kalman,Q2] = mvaar(X,p,UC); 
%       A: stores the autoregression coefficients and is of size n by p*m*m, 
%       where rows correspond to time, and columns correspond to 
%       autoregressive coefficients. For example, if p=3 (model order) and 
%       m=4 (channels) and there are n=50 time observations, then A has 50 rows and 
%       3*4*4=48 columns. The first m*m=16 columns correspond to the 
%       autoregressive coefficient, A1, the second m*m=16 columns correspond 
%       to the autoregressive coefficient, A2, and so on, up to Ap. 
%       e: n by m matrix of process noise vectors, having covariance matrix 
%       Sigma 
%Sigma=cov(e);size(e); 
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H=zeros(m,m,N,n); 
S=zeros(m,m,N,n); 
disp('Done with mvaar function') 
for t=1:n 
    for F=1:N 
        A0=eye(m,m); 
        Asum=A0; 
        for j=1:p 
            Aj=zeros(m,m); 
            for k=1:m 
                Aj(k,:)=x(t,1+(k-1)*p*m+(j-1)*m:(k-1)*p*m+j*m); 
            end; 
            Asum=Asum-Aj*exp(-sqrt(-1)*2*pi*j*F*1/fs);%use Asum -  
             
        end; 
        Y=inv(Asum); 
        H(:,:,F,t)=Y(:,:); 
        S(:,:,F,t)=H(:,:,F,t)*Q2(:,:,t)*ctranspose(H(:,:,F,t));S(:,:,1,10); 
    end; 
end; 

 

function [swADTF, UT] = calc_swADTF(H,f1,f2) 
%Returns the spectrum-weighted Adaptive Directed Transfer Function values  
%from the transfer function matrix coefficients and the Uniform Threshold  
%value to use for counting the number of connections.  The uniform  
%threshold is set to the 99th percentile of the swADTF values 
% 
% Inputs: 
% H = transfer function matrix of form H(i,j,f,t) 
% f1 = lower frequency band to compute swADTF 
% f2 = upper frequency band to compute swADTF 
% 
% Outputs: 
% swADTF = spectrum-weighted Adaptive Directed Transfer Function values of 
% form swADTF(i,j,t) 
%************************************************************************** 
disp('Calculating swADTF...'); 
[m, m2, N, n] = size(H); 
swADTF = zeros(m,m,n); swADTF_noDiag = swADTF; 
for i = 1:m, 
    i 
    for j = 1:m, 
        Ksum(1,:,:) = sum(abs(H(j,:,f1:f2,:)).^2,2); 
        Hsum_temp(1,:,:) = ((abs(H(i,j,f1:f2,:).^2))); 
        Hsum(1,:) = sum(Hsum_temp.*Ksum,2); 
        Ssum(1,:,:,:) = sum(abs(H(:,:,f1:f2,:)).^2,2); 
        Ssum = reshape(Ssum, [ 1 m length(f1:f2) n]); 
        Hsum2_temp(1,:,:,:) = abs(H(i,:,f1:f2,:)).^2; 
        Hsum2(1,:,:) = sum(Hsum2_temp.*Ssum,3); 
        Hk(1,:) = sum(Hsum2,2); 
        swADTF(i,j,:) = Hsum(1,:)./Hk(1,:); 
        swADTF_noDiag(i,j,:) = swADTF(i,j,:); 
        if(i==j), 
           swADTF_noDiag(i,j,:) = 0; 
        end 
    end 
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end 
swADTF_noDiag = reshape(swADTF_noDiag, [1,m*m*n]); 
UT = prctile(swADTF_noDiag,99.9) 
 
function [ConnOutsw, Connsw] = calc_conns(swADTF,UTsw,m,n) 
%Returns the number of "connections" for each relationship of channels 
%summed across all time based on the uniform threshold.  ConnOutsw is a mxm 
%matrix consisting of the total number of connections for each pair of 
%channels over all time. It also creates the histogram for by summing 
%across all channels for each channel 
% 
% Inputs: 
% swADTF = spectrum-weighted adaptive-directed Transfer Function  
%           swADTF(i,j,t) 
% UTsw = value of the uniform threshold (calculated as 99.9 percentile in 
%        calc_swADTF function 
% m = number of channels (will automate so you don't have to pass this) 
% n = length of signal (will automate so you don't have to pass this) 
% 
% Outputs: 
% ConnOutsw = mxm matrix of total number of "connections" for each pair of 
%             channels across all n time points 
% Connsw = 1xm vector representing histogram of connections for each 
%          channel 
%************************************************************************** 
ConnOutsw = zeros(m,m); 
%Calculate connections 
for TO = 1:m, 
    for FROM = 1:m, 
        %Grab all time points for particular TO/FROM channel combination 
        swADTF_temp = swADTF(TO,FROM,:);  
        %Reshape temporary swADTF to vector 
        swADTF_temp = reshape(swADTF_temp,[1 n]);  
        %UTsw_temp = UTsw(FROM,TO) 
        for T = 1:n, 
            if ((swADTF_temp(1,T)>=UTsw)&&(TO~=FROM)), 
                %Increment Output connecs for each time exceeding threshold 
                ConnOutsw(TO,FROM) = ConnOutsw(TO,FROM) + 1; 
            end 
        end 
    end 
end 
%Create histogram 
%Sum connections for each channel for histogram 
Connsw = zeros(1,m); 
z = 0; 
for j = 1:m, 
    z = z + 1; 
    for i = 1:m, 
        Connsw(1,z) = Connsw(z) + ConnOutsw(i,j); 
    end 
end 




