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Abstract 

Hypereutectic aluminum-silicon (Al-Si) alloys are widely used in the aerospace and 

automobile industries because of their low density, excellent wear and corrosion 

resistance, low coefficient of thermal expansion, good strength, and excellent castability. 

They are used in applications that typically require a combination of light weight and 

high wear resistance, such as liner-less engine blocks, pistons, and pumps. However, the 

performance of these alloys depends on the fineness of their cast microstructure, 

especially dendrite cell size, primary and eutectic silicon particles. In this study, the 

effects of applied electric current on the cast microstructure of Al-13 wt.% Si and Al-20 

wt.% Si were investigated. This involved application of a steady electric current density 

of about 500 mA/cm2 during solidification of laboratory-size ingots in a metal mold. 

Microscopic examination of the cast ingots with a metallurgical microscope revealed that 

the applied electric refined the cast microstructure of the hypereutectic Al-Si alloys. 

Specifically, it appeared that the electric current changed the size distribution of the 

primary silicon particles by increasing the population of comparatively smaller size 

particles, although it did not affect the eutectic silicon particles. The applied electric 

current also decreased the average dendrite cell size. The extent of the observed cast 

microstructure refinement was less than the reported effects of applied electric current in 

the technical literature. It was also significantly less than the effects of traditional 

refinement obtained by addition of strontium and phosphorus to the molten hypereutectic 

Al-Si alloys prior to casting. 
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Chapter 1 

Introduction 

 

1.1. Statement of Problem 

 

 Hypereutecctic Al-Si alloys are widely used in the automobile and aerospace 

industries because they exhibit several specific and interesting properties, such as 

excellent wear resistance, high stength-to-weight ratio, low coefficient of thermal 

expansion, good corrosion resistance, excellent fluidity, and good castability [1-3]. They 

are used in various applications such as liner-less engine blocks [4], automotive pistons 

[5], compressor bodies, and pumps [6]. Hypereutectic Al-Si alloys are used to produce 

engine blocks without cylinder liners, automotive pistons, and a number of other products 

primarily because of their high wear resistance properties resulting from a large volume 

fraction of the silicon phase. 

 However, all of the aforementioned desirable properties of hypereutectic Al-Si 

alloys depend on the characteristics of their cast microstructures, namely secondary 

dendrite cell size or arm spacing, and the size, morphology (or shape), and distribution of 

eutectic and primary Si particles. The morphology of primary silicon particles can be 

rather complex, such as plate-like [7], star-shaped [7,8], polygonal, blocky, and feathery 

[9] varying with solidification conditions, chemical composition, and alloying elements.
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In these forms, primary silicon particles compromise the machinability, wear resistance, 

and mechanical properties of the alloy castings. Refinement and control of the eutectic 

and primary silicon particles is an effective way of improving the properties of the 

hypereutectic Al-Si alloys. For examples, hypereutectic Al-Si alloys with a uniform 

distribution of fine primary silicon particles have higher strength and better wear 

resistance. 

 Several different techniques have been proposed for the refinement of eutectic 

and primary silicon particles in hypereutectic Al-Si alloys. They include: (i) chemical 

treatments by addition of elements such as Na, P, Sr, La, etc. [3,10,11], (ii) mechanical 

stirring [12], (iii) electromagnetic stirring [9,13,14] and vibration [15], (iv) ultrasonic 

treatment [16], and (v) application of an electric current during solidification [5,17]. 

 The purpose of this study is to investigate the effect of an applied electric current 

on the microstructure of hypereutectic Al-Si alloys. The motivation for this research is 

based in an industrial interest in the refinement and modification of these alloys and a 

dissatisfaction with current refinement methods that stem from a variety of technological, 

practical, and environmental issues [11,18]. As such, an effective solution that is easily 

implemented and avoids the drawbacks of the traditional techniques would be readily 

adopted by the aluminum industry. One potential alternative to the tradition refinement 

techniques is the application of an electric current to the casting during solidification, and 

previous research has shown that this process can produce significant refinement in a 

variety of cast materials [19–22]. However, few studies has been published on the 

application of this technique to Al-Si alloys [5,23,24]. This study experimentally assessed 

the effects of this technique on the microstructures of hypereutectic Al-Si alloys using 
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relatively low current densities and to compared these results with traditional methods of 

refinement. 

 

 

1.2. Research Objectives 

 

 This study has been performed to determine the effects on cast microstructure, if 

any, of the application of electric current during solidification of hypereutectic Al-Si 

alloys. In order to accomplish this, the following major objectives were identified: 

 

(a) Design and assemble a casting apparatus that would allow the effective 

 application of  electric current to a solidifying molten material and the 

 simultaneous measurement of the applied electric current and the rate of 

 solidification of the solidifying casting. 

 

(b)  Quantitatively determine the effect of an applied current on the characteristics of 

 the microstructure of hypereutectic Al-Si alloys, namely: (i) secondary dendrite 

 cell size or arm spacing, (ii) eutectic Si particle size and size distribution, and (iii) 

 the primary Si  particle size and size distribution. 

 

(c) Determine the effects of electric current density on the refinement, if any, of the 

 hypereutectic Al-Si alloys. 
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(d) Determine the effects of the chemical composition, specifically, the Si content, on 

 the effects of electric current on the cast microstructure of hypereutectic Al-Si 

 alloys. 

 

(e) Quantitatively determine the combined effects of solidification rate and electric 

 current density on the cast microstructure of Al-Si alloys. 

 

 The focus of this study was on the application of direct electric current (DC) 

during solidification of Al-13 wt. Si and Al-20 wt.% Si hypereutectic alloys in a 

laboratory-size permanent mold. 

 

 

1.3.  Technical Approach 

 

 Hypereutectic Al-Si alloys are of technological interest because of the 

advantageous properties imparted to them by the high volume fraction of hard eutectic 

and primary silicon particles. Unfortunately, the morphology of the eutectic silicon 

particles is generally needle or plate-like and the primary silicon particles are large and 

faceted, producing stress concentrations that degrade the mechanical properties of the 

material. Therefore, it is often necessary to refine the size of these particles and to modify 

their morphologies.  

 Refinement and modification can be accomplished with increased cooling rates, 

but this approach is difficult to control and not practical for some casting processes or 
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castings with thin sections. Therefore, chemical modification is often used. It is well 

established that sodium or strontium can be used to refine the eutectic silicon from a plate 

like to a fibrous morphology, and that phosphorus can be used to refine the size and 

improve the morphology of the primary silicon particles. However, combining these 

elements to refine both structures in hypereutectic alloys is much less effective on both 

types of silicon particles than either element being used in isolation. Additionally, there 

are practical and environmental concerns associated with this method. Physical methods 

for refinement have been designed as an alternative to chemical modification. These 

include mechanical and electromagnetic vibration, mechanical and electromagnetic 

stirring, semi-solid processing, and intensive melt shearing. However, the equipment for 

these processes is generally complex and expensive, and these methods have yet to be 

widely implemented by the casting industry. 

 An additional technique for refinement is the application of an electric current to 

the casting during solidification. Previous studies have shown that this process is 

effective for a variety of metals, including cast iron [19,25], pure aluminum [22], and Al 

7050 alloy [21], but few studies have been performed using this technique on Al-Si alloys 

[23,24], and fewer yet on hypereutectic Al-Si alloys [5]. Furthermore, these studies were 

conducted at relatively high current densities, but low current densities have been shown 

effective in other alloy systems [21,25,26]. Because of the widespread use of this group 

of alloys, it is of interest to further study the effectiveness of refinement using this 

method, and with the goal of minimizing power consumption, it is of particular interest to 

assess the effect at low current densities. 
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 The current study performed castings of Al-13 wt.% Si and Al-20 wt.% Si alloys 

with and without the application of an electric current. The Al-13 wt.% Si castings are 

near the eutectic composition of the Al-Si system (12.6 wt.% Si) and were used to 

investigate the effects of the applied current on the eutectic silicon particles. The Al-20 

wt.% Si castings were used to assess the effect of the current application on the primary 

silicon particles. The casting procedure was performed using a permanent mold machine 

from mild steel and the alloys of interest were melted using a natural gas furnace and 

poured manually. The electric current was supplied in a steady manner using a power 

supply with a current density of approximately 500mA/cm
2
.  Temperature data was 

recorded using type K thermocouples at three location in each casting. The temperature 

data was used to compute local solidification times and rates, and these values were 

compared for each condition. Samples around each thermocouple were sectioned from 

the castings and metallographically prepared. Optical photomicrographs were taken of 

each sample in order to qualitatively assess the effect of the application of the electric 

current on the eutectic and primary silicon particles for each casting location. 

Additionally, dendrite cell sizes were quantitatively measured and compared as a function 

of current application and solidification rate. 
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Chapter 2 

Refinement of Cast Al-Si Microstructures 

 

2.1.  Introduction 

 

 Aluminum casting alloys are generally of interest because of their high specific 

strengths compared to other casting alloys such as cast irons or steels [1]. Furthermore, 

aluminum casting alloys have good castability, good fluidity, and comparably low 

melting points. Of the various elements commonly alloyed with aluminum for casting 

purposes, silicon is among the most popular, and Al-Si alloys constitute approximately 

80% of the aluminum casting alloys [1]. This popularity is explained by the strength-to-

weight ratio, superior fluidity, excellent wear and corrosion resistance, and low shrinkage 

and coefficient of thermal expansion of Al-Si alloys. Aluminum and silicon form a 

simple binary system with a eutectic at 12.6 wt.% Si and a temperature of 577 
o
C. Figure 

2.1 shows the Al-Si equilibrium phase diagram. 

 Excellent wear resistance is commonly cited as one of the main motivating factors 

for the selection of hypereutectic Al-Si alloys for many applications, and automotive 

pistons in particular. However, wear is a complex phenomenon dependent on service 

conditions including load, speed, temperature, environment, and counterbody material 

[2], and wear resistance in Al-Si alloys as a function of silicon content is not well 

established. Clegg and Das found that wear resistance is highest for the eutectic 

composition, as shown in Figure 2.2 [3], but Wang et al. found that hypereutectic Al-Si 

alloys performed better than the eutectic alloy under high normal loads [4]. Additionally, 
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it has been found that the refinement of both the eutectic and primary silicon particles 

strongly influences the wear resistance [2,5,6]. Figure 2.3 shows an example of the 

improvement of wear resistance with microstructural refinement for eutectic and near 

eutectic Al-Si alloys [5].  

 

Figure 2.1: Equilibrium phase diagram showing the binary Al-Si system. 

 

 Physical and mechanical properties, such as density, yields strength, ultimate 

tensile strength, ductility, and hardness, are also influenced by silicon content in Al-Si 

alloys [2,7-9]. In hypoeutectic alloys, increased silicon content generally benefits these 

properties [7]. However, in hypereutectic alloys, coarse, faceted primary silicon particles 

produce stress concentrations that are detrimental to the mechanical properties of the 

material [10]. Table 2.1 shows a comparison of several mechanical properties for 

hypoeutectic and hypereutectic Al-Si alloys [7]. The ultimate tensile strength and 

ductility decreased for the hypereutectic case, but hot extruding the hypereutectic alloy 
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increased these properties to levels superior to that of the hypoeutectic alloys, as shown 

in the last row of Table 2.1, by reducing the size and increasing the uniformity of the 

primary silicon particles [7]. 

 

Figure 2.2: Wear rate as a function of silicon content for various contact pressures [3]. 

 

 

Figure 2.3: Effect of chemical modification on the wear resistance of eutectic (LM-6) and 

near-eutectic (Al-12Si) alloys [5]. 
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Table 2.1.: Comparison of mechanical properties of hypo and hypereutectic Al-Si alloys 

in as-cast conditions, and in hot extruded condition for hypereutectic composition [7]. 

 

 

 Mechanical properties of Al-Si alloys can also be improved through the 

refinement of the eutectic silicon particles. These particles form with large plate or 

needle-like morphology under normal conditions [1], but can be modified to a fine 

fibrous structure that greatly improves the mechanical properties of the material [11-16]. 

As such, for hypereutectic Al-Si alloys, it is often of interest to refine both the eutectic 

and primary silicon phases to gain the best possible combination of properties. 

 To increase the mechanical properties of these alloys, it is therefore necessary to 

modify the size and morphology of both the eutectic and primary silicon particles. This 

refinement can be achieved using increased solidification rates, but this process is 

difficult to control and not applicable to all casting processes or castings with thin 

sections [13]. As such, chemical modification using sodium, phosphorus, or rare-earth 

metals has been widely used as a method for modification [1,17-19]. Alternatively, 

physical means of modification include semisolid processing, mechanical or 

electromagnetic stirring [15,20–22], mechanical and electromagnetic vibration 

[13,21,23,24], ultrasonic vibration [14], and intensive melt shearing [25,26].  
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 One alternative to the traditional methods of refinement and modification is the 

application of an electric current to the melt during solidification. This process has 

proven effective in a variety of different alloy systems, including Al-Si alloys. The 

following presents an overview of modification techniques for both eutectic and primary 

silicon particles in Al-Si cast microstructures. 

 

 

2.2.  Chemical Modification of Cast Al-Si Microstructures 

 

 In hypereutectic Al-Si alloys, it is of interest to modify or refine both the eutectic 

and primary silicon particles. Chemical modification is a common route to achieving 

significant improvement in the size and morphology of both eutectic and primary silicon 

particles. However, the same chemical modifiers are not commonly used for both 

purposes. Simultaneous modification of both the eutectic and primary silicon particles in 

hypereutectic alloys is particularly difficult. Additionally, while a number of theories for 

the mechanisms of refinement exist, no theory fully explains the phenomenon, and it is 

still not well understood. 

 

 

2.2.1.  Chemical Modification of Eutectic Silicon Particles 

 

 Chemical modification of Al-Si alloys using certain elements can change the 

morphology of the eutectic silicon particles from a flake or needle-like to a fibrous 
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structure. The elements most commonly used are sodium and strontium, which alter the 

structure from flake-like to fibrous, and antimony, which refines the flake-like structure 

[12,27]. Figure 2.4 shows a comparison of modified and unmodified eutectic silicon 

structures comparing strontium and antimony modification [12]. Additionally, a variety 

of rare earth metals (Ba, Ca, Y, Yb) have been reported to have a similar effect on the 

eutectic structure [11]. While eutectic refinement is of considerable interest the 

mechanism of refinement is still not well understood [1,12]. Several mechanism theories 

have been proposed. The two main theories, being restricted growth and restricted 

nucleation, are briefly discussed here. 

 

Figure 2.4: Comparison of (a) unmodified eutectic structure, (b) Sr modified eutectic 

structure, and (c) Sb modified eutectic structure [12]. 

 

 One theory for the mechanism of chemical modification of the eutectic silicon 

particles, is that the atoms of the modifying element are absorbed into the growth steps of 

the silicon solid-liquid interface, causing a dramatic increase in twinning density, and 

thereby modifying the structure by inhibiting further growth of the silicon particle [28]. 

As such, this theory is generally referred to as the restricted growth theory [1]. This 
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theory is supported by the fact that modified eutectic particles contain significantly more 

twins than do particles in unmodified castings. In particular, it has been calculated that a 

growth twin is formed at the solid-liquid interface most readily if the ratio of the atomic 

radius of the modifying element to that of silicon (r/rsi) exceeds 1.65. However, several 

contradictions with this theory have been found [28]: 

 

i. While eutectic silicon particles in fibrous structures formed by modification 

contain a high density of twins, eutectic silicon particles in otherwise identical 

structures formed by quenching are relatively free of twins. The restricted growth 

theory does not explain the role of cooling rate in conjunction with impurity 

elements. 

 

ii. Even though sodium has a less than ideal atomic radius (r/rsi = 1.59) than calcium 

(r/rsi = 1.68) or ytterbium (r/rsi = 1.66), it is a superior modifier. 

 

iii. The restricted growth theory does not explain the well established phenomenon of 

over modification.  

 

 The second proposed mechanism is the restricted nucleation theory, in which the 

modifying element neutralizes the heterogeneous nucleation of silicon particles on AlP 

particles or reduces the diffusion coefficient of the silicon in the melt [1]. AlP particles 

are of interest because of their crystallographic similarity to silicon is sufficient to 

promote epitaxial growth, and greatly reduces the free energy barrier to nucleation [29]. 
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By neutralizing the effect of these particles, undercooling of the melt before eutectic 

solidification is increased, and the resulting nucleation rate of eutectic silicon particles is 

increased, causing the observed modification [1]. Similarly, it has also been proposed that 

modifying elements halt the high temperature nucleation of iron containing phases. 

Silicon particles have a propensity to heterogeneously nucleate upon these phases at 

temperatures higher than the eutectic temperatures. These silicon particles then 

experience uninterrupted growth into the eutectic liquid in the unmodified plate-like 

form. Thus, by limiting the solidification of these iron containing phases, the growth of 

the eutectic silicon particles is impeded by solidified eutectic aluminum [30]. 

 

 

2.2.2.  Chemical Modification of Primary Silicon Particles 

 

 In contrast to chemical modification of eutectic silicon particles, the mechanism 

for chemical modification of primary silicon particles is relatively well understood. It is 

generally agreed that modifying elements form compounds with aluminum that promote 

heterogeneous nucleation of silicon particles [10,12,18,31]. Thus, the quantity of primary 

silicon nuclei is dramatically increased, and given a finite amount of solute in the system, 

the average size of these particles decreases. The most common element used for primary 

silicon modification is phosphorus. It combines with aluminum to form AlP which is 

crystallographically similar to silicon and promotes epitaxial growth [10,29]. Additions 

of boron have also been shown to promote modification and increase the modification 

efficiency of phosphorus [31].  
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 The problem of modifying both the eutectic and primary silicon particles in 

hypereutectic alloys is more difficult. While phosphorus is effectively refines the primary 

particles, it does not refine or modify the eutectic particles. Furthermore, additions of 

both phosphorus and sodium, to refine primary and modify eutectic particles, 

respectively, are both much less effective than when added in isolation. This is 

presumably because they can react to form Na3P [19]. Rare earth metals have been found 

to refine the primary silicon particles [11,17,18,32]. This is of particular interest since 

these elements can simultaneously be used to modify the eutectic structure, though not as 

efficiently as the traditionally used sodium [17]. Chong et al. found that additions of 

phosphorus could be used simultaneously with rare earth metals additions to significantly 

refine both the primary and the eutectic silicon phases [18].  

 Cicco et al. [33] showed that the addition of various nanoscale inoculants to 

molten A356 lowered the free energy barrier to nucleation. This resulted in a smaller 

amount of undercooling required to nucleate the primary Al phase. They found that the 

reduction of undercooling was a function of the crystal structure of the nanoparticle, i.e. 

γ-Al2O3 is a much more effective nucleation catalyst than ɑ-Al2O3. This result is 

consistent with the lattice disregistry theory for predicting the effectiveness of a 

nucleation catalyst within the adsorption and free growth model for heterogeneous 

nucleation. They postulated that this catalysis of nucleation would lead to the adoption of 

nanoparticles as microstructural refiners and could greatly improve the mechanical 

properties of cast materials.  

 Choi et al. demonstrated that modification of both the eutectic and primary silicon 

particles in hypereutectic Al-Si alloys can be achieved with the addition of γ-Al2O3 
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nanoparticles [34]. Figure 2.5 shows histograms of primary silicon particles size in Al-20 

wt.% Si alloys treated with various amounts of Al2O3 nanoparticles additions. 

Furthermore, it was also found that these nanoparticles reinforced the metal matrix, 

leading to higher ductility, yield strength, and ultimate tensile strength, than is found 

using traditional refinement techniques. These results are demonstrated in Figure 2.6 as 

compared to ultrasonic treated, phosphorus modified, and unmodified Al-20 wt.% Si.  

 

 

Figure 2.5: Histogram showing refinement of primary silicon particles in Al-20 wt.% Si 

alloys using Al2O3 nanoparticles [34]. 

 

 

Figure 2.6: Effect of Al2O3 nanoparticles on mechanical properties of Al-20 wt.% Si 

alloys compared to ultrasonic and phosphorus modified conditions [34]. 
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2.3.  Physical Methods of Refinement of the Cast Microstructure of Al-Si Alloys 

 

 It is well known that increased solidification rate generally leads to the refinement 

of cast microstructures. In the case of Al-Si alloys, rapid solidification refines both the 

primary [35] and eutectic [11] silicon particles and also decreases the secondary dendrite 

arm spacing [35]. Unfortunately, in many industrial applications, achieving the desired 

solidification rate is neither physically, nor economically practical. A number of other 

methods for physically refining the microstructure of Al-Si alloys have been developed. 

 One method for physical refinement is mechanical vibration. In this method, the 

mold is subjected to a mechanical vibration with a particular frequency and amplitude. 

This vibration causes shearing of the dendrite arms, which float into the melt and 

promote increased nucleation. Figure 2.7 shows an example of an apparatus used to apply 

mechanical vibration to an aluminum melt during solidification. Taghavi et al. [36] found 

that mechanical vibration effectively refined the dendritic structure of A356 aluminum 

alloy, and that the level of refinement was directly related to the vibration frequency and 

the duration of the vibration treatment. Abu-Dheir et al. [13] reported that the application 

of this method to eutectic Al-Si alloys refined the eutectic and the dendritic structure of 

as-cast samples, although the refinement was not as significant as that observed with 

chemical modification. Additionally, it was found that the refinement was a strong 

function of the vibration amplitude, with a characteristic value that yielded maximum 

refinement, beyond which coarsening was observed.  

 Similar to mechanical vibration, ultrasonic vibrations can also be applied during 

solidification to refine microstructures. Using high intensity ultrasonic vibrations, Jian et 
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al. [14] observed significant refinement of both the eutectic silicon particles and ɑ-Al 

dendrites in A356 alloys. Figure 2.8 shows scanning electron photomicrographs of A356 

alloy solidified with and without ultrasonic vibration. While these mechanical vibration 

methods are effective, they face challenges for application to large permanent and sand 

molds, and because of the high cost of the equipment involved. 

 

Figure 2.7: Schematic of mechanical mold vibration apparatus with an electrical 

resistance furnace [36]. 

 

 

Figure 2.8: SEM photomicrographs of A356 alloy solidified without (a) and with (b) 

ultrasonic vibration treatment [14]. 



Chapter 2 - Refinement of Cast Al-Si Microstructures 

24 

 

 Similar to mechanical vibration, electromagnetic vibration has been used as a 

method for microstructural refinement that does not involve contacting the mold. Instead, 

the vibration is induced by applying orthogonal static magnetic and alternating electric 

fields [13]. Radjai et al. [24] studied the effect of such a vibration on the refinement of Al 

- 17 wt.% Si and concluded that electromagnetic vibration caused a cavitation effect that 

crushed the primary silicon particles into smaller pieces. Similarly, Yu et al. [23] found 

significant refinement of the primary silicon particles with the application of this 

technique. Figure 2.9 shows the change in equivalent diameter of the primary silicon 

particles as a function of current density and magnetic flux used to create the 

electromagnetic vibrations. Unfortunately, electromagnetic vibration faces many of the 

same problems for implementation as mechanical vibration in that it is not well suited for 

large molds or sand casting, and that the equipment is expensive [13].  

 

Figure 2.9: Change in equivalent diameter of primary silicon particles in Al-18 wt.% Si 

alloy using electromagnetic vibration with different electric current densities and 

magnetic fluxes [23]. 
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 If a variable magnetic field is applied to the melt, a corresponding electric field is 

induced in the fluid, and the Lorentz force caused fluid motion to occur [37]. These 

currents break off dendrite arms and increase nucleation in the same way as mechanical 

vibration or stirring. This technique is called electromagnetic stirring.  Lu et al. [20] 

found that in hypereutectic Al-Si alloys, electromagnetic stirring implemented at current 

levels above 12 amps caused the primary silicon particles to congregate, leading to 

heterogeneity in the microstructure. They found that moderate currents, between 8 and 12 

amps, are optimal for refinement. While this refinement of the primary silicon particles is 

significant, electromagnetic stirring has negligible effects on the eutectic silicon particles. 

Jung et al. [15] demonstrated this fact in aluminum alloy A356, but also showed that this 

method could be effectively used in conjunction with chemical modification using 

strontium to refine both the eutectic particles and the ɑ-Al dendrites. 

 Another physical method of refinement is the intensive melt shearing process, in 

which the liquid metal is subjected to intense shearing via a twin screw mechanism prior 

to use in a high pressure die casting process, as shown schematically in Figure 2.10 [26]. 

It has been found that this process leads a greater refinement of the primary silicon 

particles than does chemical modification using phosphorus [25,26]. Zhang et al. [25] 

speculated that the mechanism of this refinement is the distribution of oxide films as well 

dispersed nanoscale particles that act as substrates for heterogeneous nucleation. 
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Figure 2.10: Schematic of intensive melt shearing apparatus [26]. 

 

 

2.4.  Refinement of Cast Microstructures by an Applied Electric Current 

 

 An alternative method for the refinement of cast microstructures is the application 

of an electric current during solidification. Several early studies theoretically [38] and 

experimentally [39] investigated the effect of an applied electric current on the 

segregation and redistribution of solute atoms at a freezing interface during solidification. 

These studies concluded that electrotransport created by high current densities has a 

purifying effect on the material and improves segregation. Additionally, because the 

resistivity of most solid metals is about half that of the liquid phase, significant joule heat 

generated by the electric current would have the effect of reducing the growth of dendrite 

arms, with the result of increasing the interfacial stability.  

 These early studies created an interest in the effect of an applied electric current 

on the cast microstructure of various materials, and resulted in experimentation being 

performed by a number of researchers. Among these studies, two distinct regimes of high 

and low current density can be identified. High current density studies involved the use of 
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capacitor banks to discharge pulsed current, and low current density studies involved the 

use of power supplies to apply current in a steady or pulsed manner. 

 

 

2.4.1.  High Electric Current Density Regime 

 

 The first studies performed on the effect of electric current on microstructural 

refinement in the high electric current density regime were performed in the early 1990s 

on Pb-Sn alloys. Nakada et al. [40] used a capacitor bank to pulse high voltages at 20 

second intervals into a hypoeutectic Pb-Sn alloy, also varying the solidification rate and 

the point during solidification at which the current pulses were applied. Although no 

quantitative results nor the current densities induced by the capacitor bank were reported, 

the qualitative results of this experiment showed that the current pulses must be applied 

during the initial onset of solidification in order to result in modification of the 

microstructure. In this case, the microstructure was modified from large dendritic grains, 

to fine globular grains. The proposed mechanism for this refinement was shear stress 

caused by the pinch force induced by the current pulses. This shear stress caused the 

dendrites to break into globular fragments. Similar conclusions were reported by 

Jianming et al. [41], also for a hypoeutectic Pb-Sn alloy. However, Barnak et al's. [42] 

further experimentation with Pb-Sn alloys showed that the pinch force did not produce 

high enough stresses to shear dendrite arms. These experiments were performed with 

electric current densities ranging from 1000-1500 A/cm
2
 applied at frequencies varying 

from 1.5 to 5 pulses per second. They found that the grain size of the samples were 
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reduced by approximately an order of magnitude at these values. It was noted that a 

significant increase in undercooling was observed as a result of the electric current 

application. It was suggested that the primary effect of the electric current was either a 

reduction of the free energy difference between the liquid and solid states or an increase 

in the liquid-solid interfacial energy, resulting in an increased nucleation rate. This 

conclusion is consistent with the observation by Nakada et al. [40] that the electric 

current pulses are significantly more effective when applied during the initial stages of 

solidification. 

 Qin and Zhou [43] proposed that the mechanism for refinement by pulsed electric 

current was an increase in the difference in free energy between the solid and liquid 

states, and that this change in free energy results in an increased nucleation rate. 

Theoretically, they showed that an electric current can have this effect on the free energy 

of the system. Numerical calculations were performed that agreed with the results found 

by Barnak et al. [42], although no direct comparison was made. It was shown that the 

effect of joule heating, skin effect and pinch force was negligible. The numerical 

predictions by Qin and Zhou for a variety of pure metals showed that significant 

refinement should not be possible with electric current densities lower than 

approximately 10
3
 A/cm

2
. However, this conclusion is inconsistent with findings from 

studies using very low electric current densities [44–48]. 

 Shu-xian et al. performed pulsed electric current studies on A356 aluminum 

alloys [49][50]. Pulses with electric current densities of approximately 2 x 10
5
 A/cm

2
 

were administered at 1.5s periods. The results of these studies showed that the 

microstructure of the metal was obviously refined when treated with the pulsed electric 
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current. The authors proposed that the mechanism for refinement was that the pinch force 

caused by the pulsed electric current broke large nuclei into many smaller nuclei, 

resulting in more numerous, and thus by necessity, finer grains.  

 In order to determine the refining mechanism of the high density electric current 

pulse, Liao et al. [51] performed a systematic study on pure aluminum by applying 

electric current pulses during the different stages of solidification. They found no change 

in the solidification structure when the electric pulse was applied to either the high 

temperature melt or during the grain growth period of solidification. However, significant 

refinement was observed when the pulse was applied during nucleation. It was concluded 

that the electric pulse caused nuclei to fall off the mold wall and drift into the liquid, 

leading to a multiplication of stable nuclei, and that the skin effect greatly enhances this 

mechanism. This conclusion is consistent with previous speculation that an increased 

nucleation rate is responsible for the grain refinement [41]. Voltages ranging from 12.5 to 

3000 V at frequencies ranging from 100 to 1000 Hz were used, although the 

corresponding electric current densities were not reported.  

 Zhang et al. [52] studied the effect of high electric current density pulses on the 

microstructure of eutectic composition Al-Si alloys. They applied electric current 

densities ranging from 800 to 2400 A/cm
2
 at 200 Hz. The samples used were 

cylindrically shaped with diameters of 4 mm and 420 mm in length. The electric current 

was applied to each sample while being slowly pulled through an electric resistance 

furnace. They found that the applied electric current created lamellar eutectic structures, 

as shown in Figure 2.11 The quantity and size of these structures were strongly 

dependent on electric current density, with a maximum in size and frequency found at 
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1600 A/cm
2
. Additionally, larger lamellar structures were found for slower pulling rates 

through the electrical resistance furnace. It was concluded that the applied electric current 

pulses created local convection currents, driven by the Lorrentz force, that supplied solute 

material to the solidifying lamellar structures. This allowed the structures to grow larger 

than during solidification without the applied electric current, in which growth would be 

terminated by localized decreases in silicon content of the fluid feeding the solidifying 

structure. 

 

 

Figure 2.11: Lamellar eutectic structure found after application of high density pulsed 

electric current to eutectic Al-Si alloy [52]. 

 

 Xu et al. [53] studied the effect of the application of high density electric current 

on the microstructure of Al-6.6 wt.% Si alloy, and compared the direct current and 

alternating current application methods. The electric current used was 220 A, although 

neither the electric current density, nor the dimensions of the casting necessary to 

calculate it, were given. They found that the application of the direct current shortened 

the length of the eutectic silicon particles, and that these particles were preferentially 

oriented in a particular direction. The orientation direction with respect to the applied 
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current flow was not reported. When the alternating current was applied, they found 

numerous small silicon particles dispersed near the large eutectic silicon particles. Figure 

2.12 shows examples of these changes in microstructure. Xu et al. attributed this 

refinement to vibrations induced by the alternating current, similar to that produced using 

electromagnetic vibration.  

 

 

Figure 2.12: Optical photomicrographs of eutectic silicon particles in Al-6.6 wt.% Si 

alloys without electric current application (a), with direct current application (b), and with 

alternating current application (c) [53]. 

 

 Hongsheng et al. [54] conducted a study on hypoeutectic, eutectic, and 

hypereutectic composition Al-Si piston alloys, and compared the results directly with 

chemical modification. The charge material was melted using an electric resistance 

furnace and the current was supplied by a capacitor bank, with a pulsed frequency of 4 

Hz, using steel electrodes. Although it was stated that a voltage of 2000V was used, the 

current density was not discussed. They reported that pulsed electric current refined the 

ɑ-Al grains as effectively as chemical modification using sodium salt, although their 

method for grain size measurement was not discussed. In particular, it was shown that the 
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electric current application had a much greater effect when applied at a higher melt 

temperature, translating to the nucleation rather than the growth stage of solidification, 

which agrees with the finding of Liao et al. [51]. It was reported that the eutectic silicon 

particles in the samples treated with the pulsed current were smaller and more uniform. 

Figure 2.13 shows an example the change in eutectic silicon particles in an Al-17 wt.% Si 

alloy as a function of the pulsed electric current. Additionally, the pulsed electric current 

reduced the size of the primary silicon particles and changed their morphology to more 

spherical shapes. Figure 2.14 shows SEM photomicrographs of the difference in size of 

the primary silicon particles with and without the application of the pulsed electric 

current. Hongsheng et al. concluded that the effect of the electric current on the primary 

silicon particles was more significant than on the eutectic silicon particles. The effects of 

the pulsed electric current were more pronounced on alloys with higher silicon content. 

The tensile strength and microhardness of the alloys were uniformly increased with the 

application of the electric current. 

 

 

Figure 2.13: Size of eutectic silicon particles in Al-17 wt.% Si with pulsed electric 

current application (a), and without current application (b) [54]. 
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Figure 2.14: SEM photomicrographs showing difference in size of primary silicon 

particles with applied electric current (a), and without applied electric current (b) [54]. 

 

 Ban et al. [55] applied high density electric current pulses to hypoeutectic and 

hypereutectic Al-Si alloys. The alloys used were Al-7 wt.% Si, Al-10 wt.% Si, and Al-22 

wt.% Si. The current was applied at 3 kV and 6 kV, with current densities ranging from 

2931 A/cm
2
 to 5862 A/cm

2
, respectively. They found that the electric current pulses 

changed the dendritic structure of the ɑ-Al in the Al-7 wt.% Si from columnar to 

equiaxed in nature. The electric current shortened the length of the dendrites in the Al-10 

wt.% Si alloy, but did not dramatically change their structure. In the Al-22 wt.% Si alloy, 

the electric current obviously refined the primary silicon particles, and the level of 

refinement was strongly related to the current density. Figure 2.15 shows optical 

photomicrographs of the primary silicon particles without the pulsed electric current 

treatment, and with the treatment at 3 kV and 6 kV. They concluded that the refinement 

was caused by the pinch force breaking apart solidified dendrite arms or primary silicon 
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particles. The magnitude of the pinch force is a function of the electric current density, 

which explains the dependence of the level of refinement on current density. 

 

Figure 2.15: Primary silicon particles in Al-22 wt.% Si alloys without pulsed electric 

current at center of casting (a) and edge of casting (b), with 3 kV pulsed electric current 

application at center (c), and edge (d) of casting, and with 6 kV of pulsed electric current 

application at center (e) and edge of casting (f) [55]. 

 

 

2.4.2.  Low Electric Current Density Regime 

 

 Vaschenko et al. [48] first studied the effect of a steadily applied low density 

electrical current on the solidification of cast iron. An electric current density of 4-5 

mA/cm
2
 was used on samples of varying diameters and the size of the graphite flakes and 

the bending strength of the samples were measured. They reportedly found that the 
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application of the electric current refined the graphite flakes in proportion to the cross 

sectional area of the castings with a maximum reduction in size of 15-40%. Additionally, 

unrelated to the diameter of the casting, the amount of ferrite was reduced and the amount 

of pearlite was increased and a decrease in nonmetallic inclusions was also found. An 

increase in bending strength of 15-20% associated with these changes in microstructure 

was observed. They speculated that the electric current treatment suppressed nucleation 

on the impurities in the cast iron, leading to an increase in undercooling and the diffusion 

of carbon. This leads to an increase in the undercooling and an associated increase in 

nucleation rate, resulting in a finer microstructure, and higher strength. 

 Misra [45–47] performed many experiments with direct electric current 

application during solidification on a number of different of alloys, the first being with 

Pb-15 wt.% Sb-7 wt.% Sn. An electric current density of 30 to 40 mA/cm
2
 at 30 V in 

which obvious refinement was found although no quantitative analysis was performed. 

Similar experimentation, using 50 mA/cm
2
 at 20 V, was then performed on cast iron [56], 

finding similar results. Misra [45] performed further experimentation with Pb-Sb-Sn 

alloys and a current density of 50 mA/cm
2
 at 30 V finding consistent refinement and 

concluded that the refinement was a result of enhanced interface stability caused by joule 

heating of solidifying perturbations. 

 Anyalebechi and Tomaswick [44] performed a study on aluminum alloy 7050 

with varying solidification rates, electric current densities of 465 and 930 mA/cm
2
 and 

both steady and pulsed electric current. They found a significant and unambiguous 

refinement of the cast microstructure in which the average dendrite cell size, average 

second-phase particle size, average grain size, and the sizes of the largest second-phase 
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particles were reduced. The proportion of coarse second-phase particles decreased and 

the distribution of second-phase particle size was more uniform and unimodal. 

Additionally, it was found that the results were independent of current density, 

solidification rate, and the type of electric current application, being either pulsed or 

steady. Figure 2.16 shows polarized light photomicrographs demonstrating the 

refinement of the dendrite cell size of the 7050 aluminum alloy under all electric current 

application conditions and over varying solidification rates. The graph in Figure 2.17 

shows the decrease in dendrite cell size was not a function of electric current density, or 

current application method. It was concluded that the mechanism of refinement was 

primarily due to thermal fluctuations caused by Joule-Thompson and Peltier heating at 

the base of the dendrite arms, causing the arms to melt off and float into the melt creating 

additional nuclei. A secondary mechanism was also suggested, being a shear stress 

induced fragmentation of dendrite arms caused by localized convection currents. 

 Prodhan showed that the application of electric current can also be used to degas 

Al-Si alloys during solidification [57,58]. It was found that the dissolved hydrogen was 

ionized at the anode at the bottom of the melt and then traveled to the cathode at the top 

of the melt where it is de-ionized and allowed to escape. The degassing procedure using 

electric current had an efficiency comparable to nitrogen or chlorine-based degassing 

without the pollution issues caused by chlorine. Figure 2.18 shows the change in hardness 

of an LM-25 Al-Si alloy as a function of electric current density [57]. The increase in 

hardness was attributed to the degassing effect of the applied electric current. Changes in 

hardness for both AC and DC electric currents are shown. It was found that the DC 



Chapter 2 - Refinement of Cast Al-Si Microstructures 

37 

 

electric current had a greater effect on the hardness, for a given current density, than the 

AC current. 

 

 

Figure 2.16: Polarized light photomicrographs showing the effect of applied electric 

current of varying types and electric current densities on the grain size of a 7050 

aluminum alloy [44]. 
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Figure 2.17: Average dendrite cell size as a function of solidification rate for a 7050 type 

aluminum alloy with and without electric current application [44]. 

 

 

Figure 2.18: Change in hardness of LM-25 Al-Si alloy as a function of electric current 

density applied in an alternation (a) or direct (b) manner [57]. 
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Chapter 3 

Experimental Work 

 

3.1.  Introduction 

 

 In order to assess the effect of an applied electric current during solidification on 

the microstructure of hypereutectic Al-Si alloys, an experimental method was developed 

to make castings with and without the application of electric current. The following 

sections detail the experimental setup and procedure used for this study. 

 

 

3.2.  Casting Process Selection and Mold Design 

 

 In deciding which casting process to use for this work, consistency from casting 

to casting, and the ease of altering the process to easily include thermocouples and 

electrodes were of primary importance. For the purposes of consistency between castings 

and the ease of altering the setup for thermocouples and changing over from between 

experimental conditions, a permanent mold process was selected. Additionally, this type 

of process was simple to implement using the foundry equipment available at GVSU. 

 In designing the geometry of the mold and what material the mold should be 

made from, the following considerations were of primary importance: 
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i. A mold material with an electrical conductivity lower than that of the aluminum 

alloys being cast, but with high thermal conductivity to provide sufficient 

solidification rates 

ii. Ease of fabrication of the mold 

iii. Cost of mold material 

 

 The first decision made was to cast flat plates, rather than a cylindrical geometry 

as is common in the literature [1–3]. The designed casting shape was 177.8 mm long, 

101.6 mm wide, and 25.4 mm thick. Figure 3.1 shows the general shape of the mold 

including three holes that were drilled to allow access of thermocouples for temperature 

measurement during solidification. The design includes holes for two dowel pins in order 

to locate the two halves of the mold to each other. 

 

Figure 3.1: Mold machined from mild steel. The two halves of the mold were located to 

each other using dowel pins. 
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 A ceramic mold was considered for that class of materials' extremely low electric 

conductivity. However, ceramics also have low thermal conductivities and a ceramic 

mold would have created unacceptably low solidification rates in addition to being 

expensive and difficult to fabricate. A metallic mold (mild steel) was chosen for its low 

cost and good machinability, while still having an electrical conductivity approximately 

an order of magnitude smaller than that of aluminum and good thermal conductivity 

properties. The two halves of the mold were machined from flat stock using a HAAS 

CNC milling machine.  

 

 

3.3.  Rationale for Choice of Experimental Conditions 

 

 The experimental conditions for this work were carefully chosen and evaluated. 

These considerations included the alloy compositions that were used, the method of 

applying the electric current, and the details of the casting procedure.  

 

3.3.1.  Alloy Composition 

 

 Three different hypereutectic alloy compositions were provided courtesy of 

ALCOA Inc.: Al-13 wt.% Si, Al-20 wt.% Si, and Al-30 wt.% Si. Originally, it was 

intended to investigate the effect of the electric current on both the eutectic and primary 

silicon particles, as well as to assess the change in any effect as a function of the 

composition of the alloy. As can be seen in the Al-Si phase diagram in Figure 3.2, the 
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eutectic composition for this system is 12.6 wt.% Si. As such, the Al-13 wt.% Si alloy 

was ideal for studying the refinement of the eutectic particles as the microstructure in this 

alloy almost entire composed of the eutectic structure. The 20 wt.% was used to 

investigate the effect of the electric current on the primary silicon particles. Originally, it 

was planned to use the Al-30 wt.% Si alloy in conjunction with the Al-20 wt.% Si alloy 

to assess the effect of silicon content on refinement of the primary particles. However, 

due to time constraints, no castings of the Al-30 wt.% Si alloy were made. As such, 

compositions effect were not investigated. 

 

Figure 3.2: The Al-Si phase diagram. 

 

 

3.3.2.  Casting Shape and Size 

 

 The permanent mold casting process was selected in part because of the casting to 

casting consistency. Several preliminary castings were made with scrap aluminum 
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(mostly 6061 and A356 alloys) to assess shrinkage. The castings conformed well to the 

shape of the mold and contained only minimal shrinkage on the top surface and near the 

thermocouple locations.  

 

 

3.3.3.  Thermocouple Design, Placement, and Data Collection 

 

 K type chromel-alumel thermocouples were used for this experimentation and 

were made from 32 gauge (0.202 mm diameter) insulated wire. A relatively large gauge 

was used so that the thermocouple beads could withstand the conditions during casting, 

although this sacrifices the faster response time of smaller gauges. Near the tip of each 

thermocouple, a ceramic sleeve was used to protect the bare wire from the casting 

environment, while leaving just the thermocouple bead exposed, as Figure 3.4 shows.  

 

 

Figure 3.4: K type thermocouple with ceramic sleeve used for temperature measurement 

during solidification. 
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 The thermocouples were evenly spaced in the casting as shown in Figure 4.5 

Using this arrangement, the variation of solidification time with position could be 

evaluated. Prior to casting, the thermocouples were held in place using a thermoplastic 

adhesive on the outer surface of the mold. A National Instruments cDAQ-9172 Chassis 

and NI9211 module were used for data acquisition in conjunction with SignalExpress 

software. In all of the experiments, data were collected at a rate of 2 Hz. Figure 3.5 shows 

the location of each of the thermocouples and the appropriate channels they were 

connected to for data collection. 

 

 

3.3.4.  Electric Current Application 

 

 The electrodes were selected based on electrical conductivity, melting 

temperature, cost, and ease of use. Conductive graphite rods were selected based upon 

their low cost, high melting temperature, that they could be readily ordered in standard, 

usable lengths and diameters, and have been previously used for similar experimentation 

[1]. 

 The electric current was applied using two 6.35 mm diameter conductive graphite 

rods as electrodes. A constant voltage power supply was used to supply the current and a 

power resistor was added to the circuit to avoid shorting the power supply. The electric 

current was applied in a steady manner, as is common in the literature for similar low 

electric current density studies [1,3,4]. The electrodes were press-fitted into wooden 

blocks to hold them in place and insulate them from the mold prior to pouring. Figure 3.6  
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Figure 3.5: Engineering drawing of mold showing thermocouple placement (dimensions 

in mm) and the corresponding data acquisition channel for each. 

 

shows a schematic of the electrode setup. During each experiment in which the current 

was applied, the voltage was read from the power supply display and the resistance of the 

circuit was measured using a digital multi-meter once solidification had been completed. 

Ohm's law was then used to calculate the current flowing through the casting. These 

calculations were performed assuming that the electrical conductivity of the Al-Si alloy 

did not change significantly between the solid and liquid phases. This assumption is not 

completely accurate, and because the resistivity of the liquid phase is generally higher 

than that of the solid phase, this calculation will slightly underestimate the current density 

when the casting is in the liquid and mushy regions. The power supply was activated 

prior to pouring, when the electrodes were not connected. The circuit was then completed 

by the liquid metal during pouring, ensuring that current was passed through the casting 

as soon as the liquid metal contacted the electrodes. Temperature was monitored in real 
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time during the casting process. Using this information as an indicator of the 

solidification process, the electric current was shut off once it was apparent that the 

material surrounding all three thermocouple locations was completely solid. Figure 3.7 

shows a photograph of the electrode setup, and Figure 3.8 shows a photograph of the 

power supply used to apply the electric current. 

 

Figure 3.6: Schematic of electrode setup. 

 

 

Figure 3.7: Photograph of the electrode setup at the mold prior to pouring. 
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Figure 3.8: Photograph of the power supply used to apply the electric current. 

 

 

3.3.5  Casting Conditions 

 

 In preliminary castings, a temperature drop of about 100 
o
C was observed 

between the furnace and the mold. This large change in temperature was likely a function 

of the long response time of the thermocouple measurements and the fast solidification 

rates immediately after pouring, caused by chilling of the mold walls and thermocouples. 

To account for the response time of the thermocouples, the temperature of the melt in the 

furnace was increased by 100 
o
C. With a desired superheat of 50 

o
C, this equates to a 

melt temperature 150 
o
C above the liquidus temperature for the composition in question. 

For the Al-20 wt.% Si alloy, with a liquidus temperature of 700 
o
C, a melt temperature of 
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850 
o
C was used. A melt temperature of 825 

o
C was used for the Al-13 wt.% Si alloy 

castings. 

 

 

3.4.  Preparation of Cast Ingots 

 

 The charge material was melted in a graphite crucible using a natural gas furnace 

and pouring was performed manually. The melt was not degassed. For each casting, 1.3 - 

1.5 kg of charge material was used. The inside of the mold was coated with parting dust 

prior to each to ensure easy removal of the finished castings. The casting process, from 

removing the crucible from the furnace to completing the pouring of the material into the 

mold, lasted approximate one minute and the finished casting was left overnight and 

allowed to air cool. During the casting procedure, the mold was buried in casting sand, as 

shown in Figure 3.7, in order to protect the thermocouple wires and to contain any spills 

or leakage during pouring. Melt temperature prior to pouring was monitored using an 

additional k-type thermocouple connected to a digital multi-meter. Figure 3.9 shows the 

furnace and foundry equipment used for pouring of the molten metal.  

 Two castings were made for each case, being with and without an applied electric 

current and for each alloy. Table 3.1 shows the parameters of each experiment performed 

with the Al-20 wt.% Si alloy, and Table 3.2 shows the parameters for each casting made 

with the Al-13 wt.% Si alloy. The current density values are simply computed as shown 

in Equation 3.1. 
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where i is current density, I is the current applied to the casting, and A is the cross-

sectional area of the casting normal to the direction of current flow. This calculation is 

valid assuming that the current is spread evenly across the cross-sectional area of the 

aluminum casting, and does not flow through the steel mold. The latter assumption is 

based on the fact that the electrical conductivity of aluminum is approximately an order 

of magnitude greater than that of mild steel. 

 

 

Figure 3.9: Mifco T-160 furnace and foundry equipment. 

 

Table 3.1: Experimental parameters or Al - 13wt.% Si castings with applied current. 

Experimental Parameter Casting G Casting H 

Initial Casting Temperature (
o
C) 856 851 

Resistor Used 3 Ω, 100 W 4.5 Ω, 1000 W 

Measured Resistance of Circuit (Ω) 4.05 4.7 

Applied Voltage (V) 85 110 

Calculated Current (A) 20.98 23.4 

Current Density (mA/cm
2
) 465 518 
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Table 3.2: Experimental parameters for Al - 20 wt.% Si castings with applied current. 

Experimental Parameter Casting C Casting D 

Initial Casting Temperature (
o
C) 826 825 

Resistor Used 4.5 Ω, 1000 W 4.5 Ω, 1000 W 

Measured Resistance of Circuit (Ω) 4.85 5.17 

Applied Voltage (V) 110 110 

Calculated Current (A) 22.7 21.3 

Current Density (mA/cm
2
) 502 471 

 

 

 

3.5.  Characterization of the Cast Ingot Microstructures 

 

 From each finished casting, a sample was taken from material surrounding each 

of the thermocouples. By doing this, it could be safely assumed that the temperature 

recorded by the thermocouple was representative of the conditions that produced the 

microstructure in the corresponding sample. The surface of each sample that was nearest 

the bottom of the casting was metallographically prepared. Figure 3.10 shows how each 

sample was cut around the thermocouples and labels which surface was used for 

metallographic preparation. Figure 3.11 shows two examples of cast ingots with the 

thermocouples imbedded in the cast material. Figure 3.12 shows a photograph of the 

completed and assembled mold. 
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Figure 3.10: Schematic showing how each sample was cut around one of the 

thermocouples and the surface that was metallographically prepared. 

 

 

Figure 3.11: Example of cast ingots with thermocouples imbedded in castings. 
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Figure 3.12: Photograph of completed and assembled mold. 
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Chapter 4 

Results and Discussion 

 

4.1. Introduction 

 

 The data collected from this study are of three types: (i) quantitative temperature 

measurements from each casting, (ii) optical photomicrographs from each sample, and 

(iii) quantitative measurements of dendrite cell size from each sample. The temperature 

data was used to calculate local solidification times and rates and comparisons of these 

values were made for corresponding location in castings solidified with and without the 

application of electric current.  

 

 

4.2. Local Solidification Rates 

 

 Cooling curves were constructed using the temperature-time data obtained with 

the thermocouples in each casting. Figure 4.1 shows overlaid cooling curves for two of 

the Al-13wt.% Si castings; one with, and one without the electric current treatment. The 

same is shown for two of the Al-20wt.% Si casting in Figure 4.2 From these graphs, it is 

apparent that there were no significant differences in solidification time for castings with 

and without the applied electric current.  
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 Using the temperature data, the local solidification times and solidification rates 

for each location in each casting were calculated. Solidification rate was calculated using 

Equation (4.1). 

 

   
  

  
                                                                                    

 

where    is local solidification rate, ΔT is the freezing range, and Δt is the local 

solidification time. The local solidification times and calculated solidification rates are 

shown in Table 4.1. 

 

 

Figure 4.1: Comparison of cooling curves for Al-13 wt.% Si without and with electric 

current treatment as a function of distance (in mm) from the top of the mold. 
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Figure 4.2: Comparison of cooling curves for Al-20 wt.% Si without and with electric 

current treatment as a function of distance (in mm) from the top of the mold. 

 

 Figure 4.3 shows the local solidification rate in each casting as a function of 

distance from the top of the cast ingot. For each composition, the local solidification rates 

at each location are very similar between castings.   

 

 

4.3. Cast Microstructure 

 

 In general, the cast microstructure of the castings of both hypereutectic Al-Si 

alloys produced with and without application of electric current during solidification 

consisted of primary silicon particles, eutectic silicon particles, and eutectic aluminum 

dendrite cells. The volume fraction of these phases depended on the silicon content of the   
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Table 4.1: Local solidification times and solidification rates for Al-13 wt.% Si castings. 

Composition Casting Condition 

Distance 

From Top of 

Mold (mm) 

Local 

Solidification 

Time (s) 

Local 

Solidification 

Rate (
o
C/s) 

Al-13 wt.% 

Si 

A 
No 

Current 

38.1 105 0.08 

88.9 86 0.09 

139.7 66 0.12 

B 
No 

Current 

38.1 101 0.08 

88.9 86 0.09 

139.7 70 0.12 

C 
502 

mA/cm
2
 

38.1 96 0.08 

88.9 69 0.12 

139.7 67 0.12 

D 
471 

mA/cm
2
 

38.1 102 0.08 

88.9 82 0.10 

139.7 63 0.13 

Al-20 wt.% 

Si 

E 
No 

Current 

38.1 104 1.09 

88.9 99 1.15 

139.7 75 1.52 

F 
No 

Current 

38.1 121 0.93 

88.9 94 1.20 

139.7 70 1.61 

G 
465 

mA/cm
2
 

38.1 116 0.98 

88.9 107 1.06 

139.7 73 1.55 

H 
518 

mA/cm
2
 

38.1 102 1.11 

88.9 95 1.20 

139.7 75 1.52 

 

 

alloy. The cast microstructure of the Al-13 wt.% Si alloy consisted primarily of eutectic 

silicon particles and eutectic aluminum dendrite cells, with a small volume fraction of  

primary silicon particles. The primary silicon particles in this alloy tend to be small and 

not faceted. Figure 4.4 shows an optical photomicrograph of the Al-13 wt.% Si cast 
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microstructure. The cast microstructure of the Al-20 wt.% Si alloy included a much 

larger volume fraction of primary silicon particles, and a correspondingly smaller 

quantity of eutectic silicon particles and eutectic aluminum dendrite cells. The primary 

silicon particles in this alloy were much larger and tended to be faceted. Figure 4.5 shows 

an optical photomicrograph of the Al-20 wt.% Si cast microstructure. 

 

 

Figure 4.3: Solidification rates of each casting as a function of the distance from the top 

of the cast ingot. 
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 The effect of the applied electric current on the cast microstructure of 
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Figure 4.4: Optical photomicrograph at 100x magnification of representative Al-13 wt.% 

Si cast microstructure, showing primary silicon particles, eutectic silicon particles, and 

eutectic aluminum dendrite cells. 

 

 

Figure 4.5: Optical photomicrograph at 100x magnification of representative Al-20 wt.% 

Si cast microstructure, showing eutectic silicon particles, eutectic aluminum dendrite 

cells, and a large volume fraction of primary silicon particles. 
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4.4.1. Dendrite Cell Size 

 

 The change in dendrite cell size as a function of the application of an electric 

current during solidification was quantitatively measured. This was performed manually 

for each sample at 200x magnification using the Leco IA32 image analysis software. 

Areas where dendrite cells were clearly visible were identified in each sample, and the 

widest part of each visible dendrite was measured, as shown in Figure 4.7. Thirty 

measurements were taken from each sample. Because two castings were made for each 

condition, this equates to sixty data points that were used for comparison for each casting 

location, for each composition. Statistical significance was not immediately found for the 

Al-20 wt.% Si castings, so an additional thirty data points were collected for each sample, 

equating to a total of 120 data points for each condition at this composition. A summary 

of results for each condition is shown in Table 4.2. 

 

Figure 4.6: Optical photomicrograph at 200x magnification showing an example of how 

each dendrite cell was measured at its widest point at locations where dendrites were 

clearly visible. 
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 The results in Table 4.2 show that for each location in the castings, the mean 

dendrite cell size was reduced by electric current in all cases, with the exception of the 

bottom location in the Al-20 wt.% Si composition. 

 

Table 4.2: Average dendrite sizes and standard deviations for each composition and 

casting condition. 

Composition Condition 
Distance From Top 

of Ingot (mm) 
Avg (μm) Std Dev (μm) 

Al-13 wt.% Si 

No 

Current 

38.1 37.79 12.18 

88.9 34.75 12.37 

139.7 31.42 10.13 

With 

Current 

38.1 34.86 10.39 

88.9 25.83 12.01 

139.7 23.09 8.69 

Al-20 wt.% Si 

No 

Current 

38.1 38.01 11.74 

88.9 36.69 9.33 

139.7 26.10 9.79 

With 

Current 

38.1 36.74 12.98 

88.9 32.88 13.01 

139.7 26.19 10.23 

 

 

Table 4.3: Percent reduction in dendrite cell size resulting from the application of electric 

current during solidification with respect to distance from top of mold and composition. 

Composition 
Distance From Top 

of Ingot (mm) 
% Reduction 

Al-13 wt.% Si 

38.1 7.8% 

88.9 25.7% 

139.7 26.5% 

Al-20 wt.% Si 

38.1 3.4% 

88.9 10.4% 

139.7 -0.3% 
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 Dendrite cell size is strongly dependent on solidification rate, and no significant 

differences in solidification rates were observed between samples taken from similar 

locations for each alloy composition. This is shown graphically in Figure 4.3. Since the 

application of an electric current affected the dendrite cell size, but not solidification rate, 

dendrite cell size as a function of local solidification time and local solidification rate was 

investigated. Figure 4.7 shows average dendrite cell size with respect to local 

solidification time for each alloy composition with and without the electric current 

treatment. Figure 4.8 shows the average dendrite cell size with respect to local 

solidification rate for each alloy composition with and without the electric current 

treatment. These graphs show that the dendrite cell size, with respect to local 

solidification time and rate, does not drastically change with the application of an electric 

current during solidification. 

 

 

Figure 4.7: Average dendrite cell size as a function of alloy composition and application 

of electric current during solidification with respect to the local solidification time. 
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Figure 4.8: Average dendrite cell size as a function of alloy composition and application 

of electric current during solidification with respect to local solidification rate. 
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the casting solidified under the influence of an electric potential are noticeably smaller in 

size. Figure 4.11 shows an example of these relatively smaller primary silicon particles. 

 

 

Figure 4.9: Optical photomicrographs at 200x magnification showing primary silicon 

particles in Al - 20wt.% Si without (a and c) and with (b and d) application of electric 

current during solidification. 
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Figure 4.10: Optical photomicrographs at 500x showing the difference in size of the 

smallest primary silicon particles in samples from the centers of Al - 20wt.% Si castings 

solidified (a) without electric current and (b) with electric current. 

 

 

 

Figure 4.11: Very small primary silicon particles (200x magnification and 1000x 

magnification) in Al-20 wt.% Si with electric current applied during solidification. 

 

 Optical photomicrographs of primary silicon particles in the Al-13 wt.% Si alloys 

solidified with and without the application of an electric current are shown in Figure 4.12 
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and 4.13. Unlike in the Al-20 wt.% Si alloys, it does not appear that the application of 

electric current during solidification had an effect on the size or size distribution of the 

primary silicon particles in the Al-13 wt.% Si alloys.  

 

 

Figure 4.12: Optical photomicrographs at 200x magnification of primary silicon particles 

in Al-13 wt.% Si alloy without (a and c) and with (b and d) application of electric current 

during solidification. 
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Figure 4.13: Optical photomicrographs at 500x magnification of primary silicon particles 

in Al-13 wt.% Si alloys cast without (a and c) and with (b and d) the application of 

electric current during solidification 

 

 

4.4.3. Eutectic Silicon Particles 

 

 Figure 4.14 shows representative photomicrographs of the eutectic particles at 

100x magnification for samples from the center of castings solidified with and without 

the electric current treatment. The eutectic silicon particles display a large size 
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distribution within a single sample, and these variations overlap for cases with and 

without the applied current. Qualitatively, there is no apparent effect on the size or size 

distribution of the eutectic silicon particles.  

 Figure 4.15 shows representative optical photomicrographs of the eutectic silicon 

particles at 500x magnification for samples solidified with and without the application of 

electric current. Again, a large variation in particle size is observed in both conditions, 

and it is also apparent that the morphology of the particles remains the same. In both 

conditions, the morphology of the eutectic silicon particles are needle or plate-like. 

 

Figure 4.14: Optical photomicrographs at 100x magnification showing the large size 

distribution of eutectic silicon particles within a particular sample from Al - 13wt.% Si 

castings without current application (a and c) and with current application (b and d). 



Chapter 4 - Results and Discussion 

80 

 

 

Figure 4.15: Optical photomicrographs at 500x showing no significant change in 

morphology of the eutectic silicon particles with the application of an electric current. 

Photomicrographs shown are from samples at the center of the castings. 

 

 

4.5. Discussion 

 

 The results obtained in this study have demonstrated the application of an electric 

current of approximately 500mA/cm
2
 during solidification has the following effects on 

the cast microstructure of hypereutectic Al-Si alloys: 
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(i) The average dendrite cell size was reduced in all cases except the for the at the 

 bottom of the Al-20 wt.% Si alloy. 

 

(ii) The applied electric current did not change the size of the largest primary silicon 

 particles, but it appeared to have qualitatively increased the population of 

 relatively smaller sized primary silicon particles in the Al-20 wt.% Si alloy. 

 

(iii) Qualitatively, the applied electric current did not change the size or size 

 distribution of  the primary silicon particles in the Al-13 wt.% Si alloy. 

 

(iii)  The size, size distribution, and morphology of the eutectic silicon particles were 

 not altered by the applied electric current during solidification.  

 

 

4.5.1. Dendrite Cell Size 

 

 T-tests were used to determine the statistical significance of the reduction in 

dendrite cell size observed as a result of the application of electric current during 

solidification. Microsoft Excel was used to perform the t-tests, which were single tailed 

in nature and assumed unequal variances. Table 4.3 shows the percent reduction in 

dendrite cell size and p-values resulting from the t-tests performed on each set of 

measurements. All locations in the Al-13 wt.% Si compositions had decent statistical 

significance (p < 0.1), and the center of the Al-20 wt.% Si composition had very good 
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significance (p = 0.005), although the top and bottom samples from the Al-20 wt.% Si 

castings had very poor significance (p > 0.2). 

 

Table 4.4: Percent reduction in dendrite cell size with application of electric current for 

each alloy composition as a function of distance from top of ingot and p-values resulting 

from t-tests comparing the corresponding data sets. 

Composition 

Distance From 

Top of Ingot 

(mm) 

% Reduction p-value 

Al-13 wt.% Si 

38.1 7.8% 0.079 

88.9 25.7% 0.055 

139.7 26.5% 0.078 

Al-20 wt.% Si 

38.1 3.4% 0.213 

88.9 10.4% 0.005 

139.7 -0.3% 0.473 

 

 The Al-13 wt.% Si castings in this study, in which the reduction of dendrite cell 

size as a function of the applied current was statistically significant for all regions of the 

castings, showed a reduction of 7.8% at the top, and 25.7% and 26.5% at the middle and 

bottom thermocouple locations, respectively. The 26% reduction in dendrite size agrees 

reasonably well with results reported by Anyalebechi and Tomaswick [1] for Al 7050 

castings solidified under the influence of electric currents varying from 465 mA/cm
2
 to 

930 mA/cm
2
, and applied in both steady and pulsed manners. The dendrite cell sizes were 

reduced by 29% and the reported effect was not dependent on electric current density or 

manner of current application. This also falls within the range of 25% to 40% reduction 

in size of graphite flakes reported by Vaschenko et al. for gray cast iron solidified in a 

sand mold [2]. 
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 Anyalebechi and Tomaswick [1] speculated that the reduction in dendrite cell size 

was caused by a shear stress induced fragmentation of dendrite arms. Peltier, Thompson, 

and Joule heating at the solid-liquid interface may have caused strong localized 

convection currents that produced enough force to shear off solidified dendrite arms. 

These solid fragments would then float into the melt and serve as additional nuclei. The 

electric current densities used in this study were similar to those used by Anyalebechi and 

Tomaswick, and they also found refinement of dendrite cell size with steadily applied 

electric current. Considering these similarities to this study, in both methods and results, 

it is likely that similar mechanisms were responsible. Therefore, dendrite shearing by 

localized convection currents may be the mechanism for the dendrite cell size refinement 

observed in this study. 

 Nakada et al. [3] and Jianming et al. [4] proposed similar dendrite arm 

fragmentation theories for refinement. However, they speculated that the mechanism for 

dendrite arm shearing was the pinch force caused by high density electric pulses. Barnak 

et al. [5] calculated that the pinch force caused by electric current densities of 1000-1500 

A/cm
2
 did not create shear stresses high enough to break dendrite arms in Pb-Sn alloys. 

Considering Barnak et al.'s [5] calculations, and because the electric current application 

in this study was several orders of magnitude lower than studies by Nakada et al. [3] and 

Jianming et al. [4] and was not pulsed, it is unlikely that the dendrite shearing caused by 

the pinch force was the mechanism for the observed refinement of dendrite cell size.  

 Anyalebechi and Tomaswick [1] also suggested that a secondary mechanism in 

which the applied electric current dramatically changed the solid-liquid interfacial 

energy, leading to an increase in nucleation rate. Qin and Zhou [6] theoretically studied 
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this refinement mechanism and calculated the level of refinement as a function of electric 

current density for a variety of pure metals. Their calculations did not predict significant 

refinement at electric current densities below 10
3
 A/cm

2
. However, they made no 

predictions for comparatively more complex multi-component systems. In the case of 

dendrite arms in hypereutectic Al-Si alloys, the interfacial energy of concern is between 

solid primary silicon particles and eutectic composition liquid transforming into eutectic 

aluminum dendrites. It is possible that this interfacial energy is affected to a greater 

extent by the application of electric current in pure metals as predicted by Qin and Zhou 

[6]. Alternatively, this mechanism may make a small contribution in combination with 

other mechanisms to result in the observed refinement of dendrite cell size. 

 For the Al-20 wt.% Si alloys, the change in the dendrite size was not statistically 

significant in the samples from the top and bottom of the castings. Good statistical 

significance (p = 0.005) was found at the center of the casting, but the reduction was 

modest in comparison to the Al-13 wt.% Si alloy at 10%. This result suggests that the 

presence of a large volume fraction of primary silicon particles in the melt at the time 

when the eutectic aluminum dendrites formed during the eutectic reaction changed the 

interaction between the electric current and the solidifying eutectic aluminum dendrite 

cells. This may have been a result of increased Joule and Peltier heating caused by the 

large volume fraction of primary silicon particles. At the eutectic temperature for the Al-

Si binary system, pure silicon has an electrical resistivity approximately four orders of 

magnitude greater than that of aluminum [7-9]. Joule heating is directly proportional to 

resistance, and as such, for a given current density, local heating caused by the Joule 

effect may be increased by a larger volume fraction of primary silicon particles. Peltier 
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heating is a function of the interface between two dissimilar materials. As such, this 

heating would increase with the increased volume fraction of primary silicon particles. 

Additionally, the Peltier effect is closely related to the thermoelectric effect, which is in 

turn related to the Seebeck coefficient. The Seebeck coefficient for pure silicon is 

approximately two orders of magnitude greater than that for aluminum [9]. Therefore, it 

is possible that a greater quantity of primary silicon present during the eutectic reaction 

would have a dramatic effect on the amount of Peltier heating produced. These sources of 

heat may have decreased the local solidification rate, and increased the dendrite cell size. 

 

 

4.5.2. Primary Silicon Particles 

 

 Of the previous studies on the effects of electric current on Al-Si alloys, only 

Hongsheng et al. [10] and Ban et al. [11] experimented on hypereutectic Al-Si alloys and 

assessed the effect of such a treatment on the primary silicon particles. Hongsheng et al. 

[10] found that the high density, pulsed electric current reduced the size of the primary 

silicon particles and made the particles more spherical in shape. These results agree with 

this study because a reduction in the size of some of the primary silicon particles was 

observed. However, the effect of the electric current pulses on the size distribution of the 

silicon particles was not discussed. Hongsheng et al. [10] theoretically showed that the 

application of electric current reduced the free energy barrier for nucleation for 

aluminum, but suppressed nucleation for silicon. This caused an increase in nucleation 

rate for primary silicon particles, resulting in smaller, more uniformly distributed 
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particles. This mechanism may be applicable to the apparent increase in relatively smaller 

sized primary silicon particles in this study. It is possible that the electric current partially 

suppressed the primary silicon nucleation. This may have produced some primary silicon 

particles that nucleated near the liquidus temperature and had sufficient time to grow, but 

suppressed further nucleation to lower temperatures, resulting in comparatively smaller 

sized primary silicon particles.  

 Ban et al. [11] also studied the application of high density electric pulses to 

hypereutectic Al-Si alloys during solidification. They concluded that the refinement was 

caused by the pinch force breaking solidified primary silicon particles into smaller pieces. 

This mechanism is not applicable to this study because the electric current application 

was not pulsed, and because the electric current density was several orders of magnitude 

smaller than that used by Ban et al. [11].  

 

 

4.5.3. Eutectic Silicon Particles 

 

 The lack of an observed effect of the applied direct and steady electric current on 

the size and morphology of the eutectic silicon particles in this study is not consistent 

with the reported effects of pulsed electric current in the technical literature [10,12,13]. 

For example, Hongsheng et al. reported that the application of a high density pulsed 

electric current during solidification reduced the length of the eutectic silicon particles 

[10]. The electric current density used for this study was not reported, but the voltage 

used was 2000V, discharged via a capacitor bank. As such, it may be assumed that the 
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electric current density was much larger than that used for the present study. Xu et al. 

[12] experimented with both direct and alternating electric currents on hypoeutectic Al-Si 

alloys. They reported similar results as Hongsheng et al. [10], in that the length of the 

eutectic particles was decreased, and noted that the result was more dramatic with the 

alternating current. Again, the electric current density was not reported, but electric 

currents of 220A were used, so assuming that the cross sectional area of the casting was 

on the same order of magnitude as this study, the current density was much greater.  

 The electric current density used in this study was several orders of magnitude 

less than that used by Hongsheng et al. [10] and Xu et al. [12]. Additionally, electric 

current was administered in a steady rather than pulsed [10] or alternating [12] manner. 

Considering that no change in the eutectic silicon particles was observed in this study, it 

may be concluded that the effect of the application of electric current during 

solidification to Al-Si alloys on the eutectic particles is either a function of electric 

current density, or the manner of application. Hongsheng et al. [10] suggested that the 

mechanism of refinement was suppression of the nucleation of silicon. This effect is 

likely a function of current density, and thus may not have been significant in this study 

with a current density of 500 mA/cm
2
. Xu et al. [12] attributed refinement of the eutectic 

silicon particles to vibration induced by the alternating current, similar to refinement via 

electromagnetic vibration. The current in this study was applied in a direct manner, so 

this effect was not applicable. 

 Zhang et al. [13] applied pulsed electric current densities ranging from 800 A/cm
2
 

to 2400 A/cm
2
 to Al-Si alloys of eutectic composition. They reported that this procedure 

produced areas of fine lamellar structures of eutectic silicon, distributed among the usual, 
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randomly oriented needle or plate-like eutectic structure. Figure 4.16 shows an example 

of these structures. No similar structures were found in the samples prepared for this 

study. Zhang et al. [13] concluded that the fine lamellar eutectic silicon structure was 

formed because the Lorentz force generated by the pulsed electric current constantly fed 

solute to the solidifying region. However, the Lorentz force is only generated under a 

time dependent magnetic field [14]. Steady applied electric current, such as used in this 

study, is not time dependent, and therefore, does not generate the Lorentz force. 

Therefore, the lack of such fine lamellar structures in the samples from this study is not 

surprising. 

 

 

Figure 4.16: Lamellar eutectic Si structure induced by the application of high density 

pulsed electric current during solidification of eutectic Al-Si alloy [13]. 
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Chapter 5 

Conclusions and Suggested Future Research 

 

5.1. Conclusions 

 

1. The application of 465-518 mA/cm
2
 steady electric current to Al-13 wt.% Si alloy 

 during  solidification reduced the average dendrite cell size throughout the casting 

 by 7.8%-26.5%, with statistical significance (p < 0.1). The application of electric 

 current during  solidification to the Al-20 wt.% Si alloy did not change the 

 dendrite cell size at the top or bottom of the casting, but it reduced the average 

 dendrite cell size at the center of the  casting by 10.4% (p = 0.005). 

 

2. For Al-20 wt.% Si alloy, the application of 465-518 mA/cm
2
 steady electric 

 current during solidification did not reduce the size of the largest primary silicon 

 particles, but it appeared to have qualitatively increased the population of 

 relatively smaller size primary silicon particles. The application of electric current 

 during solidification did not appear to have any effect on the size or size 

 distribution of primary silicon particles in the Al-13 wt.% Si alloy. 

 

3.  The application of a steady electric current during solidification did not appear to 

 have any effect on the size or morphology of the eutectic silicon particles in both 

 the Al-13 wt.% Si and Al-20 wt.% Si alloys.  
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5.2. Suggested Future Research 

 

 In this study, no quantitative measurement with an image analyzer of the size, size 

distribution, or morphology of the primary and eutectic silicon particles in either the Al-

13 wt.% Si or Al-20 wt.% Si alloys was performed, primarily due to time constraints. 

Future work should involve quantitative characterization of the Si particles that form 

during solidification of the hypereutectic Al-Si alloys with an image analyzer software 

package. In particular, the size and size distribution of the primary silicon particles in the 

Al-20 wt.% Si alloy should be measured as a function of the applied electric current 

during solidification and location within each casting. 

 The electric current in this study was supplied in a steady manner and with 

relatively small current density. It would be of interest to investigate the effect of a 

steadily applied current during solidification on the microstructure of hypereutectic Al-Si 

alloys at higher current densities. Also, studying these effects at various solidification 

rates might reveal details about the mechanism of refinement. Varying solidification rates 

could be accomplished using different mold materials or by chilling the mold during the 

casting procedure. 

 Numerous other studies investigating the effect of an applied electric current 

during solidification on the microstructure of various materials involved the use of 

different current application methods. One application method of particular interest is 

using an AC current, rather than a DC current. It would be of interest to investigate the 

effect on the microstructure of such a current applied during solidification to 

hypereutectic Al-Si alloys, and to compare these results to those found using DC 
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application at similar current densities. This experimentation would be simple to 

implement using the same equipment used for this study, as the power supply involved 

was also capable of AC current application. It would also be of interest to investigate the 

effects of different levels of pulsed electric current density applied during solidification 

on the cast microstructure of hypereutectic Al-Si alloys.  

 Additionally, a theoretical study of the proposed mechanisms for the electric 

current-induced refinement in hypereutectic Al-Si alloys is of interest. This will include 

the evaluation of the interfacial energy between solid primary silicon particles and liquid 

Al-Si as a function of the applied current density. This interfacial energy could then be 

used to evaluate the effect of the electric current on the free energy barrier for nucleation. 

Also, a more thorough investigation of the magnitude of Joule and Peltier heating as a 

function of current density is of interest. A quantitative analysis of these effects might 

explain why significant dendrite cell size reduction was observed uniformly in the Al-13 

wt.% Si alloy, but no in the Al-20 wt.% Si alloy. 
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